Paper
Organic & Biomolecular Chemistry
M. Hayashi, Synthesis, 2008, 3361; (e) M. Batók, Chem. Rev., 17 For general reviews on the catalytic asymmetric Mannich-
2010, 110, 1663.
type reaction, see: (a) A. Ting and S. E. Schaus, Eur. J. Org.
Chem., 2007, 5797; (b) J. M. Verkade, J. C. van Hemert,
P. L. M. Quaedflieg and F. J. T. Rutjes, Chem. Soc. Rev.,
2007, 37, 29.
6 For selected examples of diastereodivergent catalysis:
(a) A. Nojiri, N. Kumagai and M. Shibasaki, J. Am. Chem.
Soc., 2009, 131, 3779; (b) X. Tian, C. Cassani, Y. Liu,
A. Moran, A. Urakawa, P. Galzerano, E. Arceo and 18 For the first report of organocatalytic asymmetric
P. Melchiorre, J. Am. Chem. Soc., 2011, 133, 17934;
(c) A. Martinez-Casthaneda, H. Rodriguez-Solla, C. Concellon
and V. del Amo, J. Org. Chem., 2013, 77, 10375.
Mannich-type reactions using 1,3-dicarbonyl compounds:
D. Uraguchi and M. Terada, J. Am. Chem. Soc., 2004, 126,
5356.
7 For a comprehensive discussion of the importance of 19 For selected examples of solvent-dependent enantiodiver-
cascade reactions: A. M. Walji and D. W. C. MacMillan,
Synlett, 2007, 1477.
8 For our approach to the development of a programmed-
cascade reaction with a single chiral catalyst: Y. Sohtome,
T. Yamaguchi, B. Shin and K. Nagasawa, Chem. Lett., 2011,
843.
9 A. Fersht, Structure and Mechanism in Protein Science: A
Guide to Enzyme Catalysis and Protein Folding, Freeman,
New York, 1999.
gent metal catalysis, see: (a) M. Kanai, K. Koga and
K. Tomioka, J. Chem. Soc., Chem. Commun., 1993, 1248;
(b) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1999, 121,
4545; (c) Y. Inoue, H. Ikeda, M. Kaneda, T. Sumimura,
S. R. L. Everitt and T. Wada, J. Am. Chem. Soc., 2000, 122,
406; (d) J. Zhou, M.-C. Ye, Z.-Z. Huang and Y. Tang, J. Org.
Chem., 2004, 69, 1309. For solvent-dependent diastereo-
divergent reactions using chiral substrates, see the
reference: (e) G. Cainelli, P. Calletti and D. Giacomini,
Chem. Soc. Rev., 2009, 38, 990.
10 (a) S. Yamaguchi and S. H. Mosher, J. Am. Chem. Soc., 1972,
94, 9254; (b) S. Yamaguchi and S. H. Mosher, J. Org. Chem., 20 For recent general reviews on chiral guanidine/guanidi-
1973, 38, 1870.
11 For enantiodivergent reactions using
nium and (thio)urea for asymmetric organocatalysis, see:
(a) Science of Synthesis; Asymmetric Organocatalysis 2, ed.
K. Maruoka, Gerog Thieme Verlag KG, Stuttgart
and New York, 2012. For pioneering work utilizing
chiral double hydrogen bond donor catalysts, see:
(b) M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc.,
1998, 120, 4901.
a stoichiometric
chiral organic compound, see:
amount of
a
(a) S. Arseniyadis, A. Valleix, A. Wagner and C. Mioskowski,
Angew. Chem., Int. Ed., 2004, 43, 3314; (b) S. Arseniyadies,
P. V. Subhash, A. Valleix, S. P. Mathew, D. G. Blackmond,
A. Wagner and C. Mioskowski, J. Am. Chem. Soc., 2005, 127,
6138.
21 For entropy-controlled enantioselective organocatalysis,
see: (a) Y. Sohtome, B. Shin, N. Horitsugi, R. Takagi,
K. Noguchi and K. Nagasawa, Angew. Chem., Int. Ed., 2010,
49, 7299; (b) Y. Sohtome, B. Shin, N. Horitsugi, K. Noguchi
and K. Nagasawa, Chem.–Asian J., 2011, 6, 2463; (c) For an
entropy-controlled Lewis acid catalysis in water, see:
K. Aplander, U. M. Lindstrom and J. Wennerberg, Synthesis,
2012, 44, 848.
12 For an inorganic-salt-dependent enantiodivergent organo-
catalysis, see: (a) P. Manzón, R. Chinchilla, C. Nájera,
G. Guillena, R. Kreiter, R. J. M. K. Gebbink and G. van
Koten, Tetrahedron: Asymmetry, 2002, 13, 2181; For an
additive-dependent-enatiodivergent organocatalysis, see:
(b) S.-H. Chen, B.-C. Hong, C.-F. Su and S. Sarshar,
Tetrahedron Lett., 2005, 46, 8899; (c) N. Abermi, G. Masson
and J. Zhu, Org. Lett., 2009, 11, 4648; (d) S. A. Moteki, 22 For a comprehensive discussion about enthalpy–entropy
J. Han, S. Arimitsu, M. Akakura, K. Nakayama and
K. Maruoka, Angew. Chem., Int. Ed., 2012, 51, 1187.
13 Y. Sohtome, S. Tanaka, K. Takada, T. Yamaguchi and
K. Nagasawa, Angew. Chem., Int. Ed., 2010, 49, 9254.
compensation using differential activation parameters
(ΔΔH‡ and ΔΔS‡) in supramolecular complexation, see:
M. Rekharsky and Y. Inoue, J. Am. Chem. Soc., 2000, 122,
4418.
14 After our methodology was reported, other types of enantio- 23 For our first report of the development of guanidine/
divergent organocatalyses using structurally tunable
bifunctional catalysts have been described; (a) M. Messerer
and H. Wennemers, Synlett, 2011, 499; (b) J. Wang and
bisthiourea organocatalysts, see: Y. Sohtome, Y.
Hashimoto and K. Nagasawa, Adv. Synth. Catal., 2005,
347, 1643.
B. L. Feringa, Science, 2011, 331, 13429; (c) S. Mortezaei, 24 For our personal account: (a) Y. Sohtome and K. Nagasawa,
N. R. Catarineu and J. W. Canary, J. Am. Chem. Soc., 2012,
134, 8054.
15 For enantiodivergent reactions using a structurally switch-
Synlett, 2010, 1.
25 B. R. Linton, M. S. Goodman and A. D. Hamilton,
Chem.–Eur. J., 2000, 6, 2449.
able polymer, see: M. Suginome, T. Yamamoto, Y. Nagata, 26 Y. Sohtome, A. Tanatani, Y. Hashimoto and K. Nagasawa,
T. Yamada and Y. Akai, Pure Appl. Chem., 2012, 84, 1759
and the references cited therein.
16 For monodentate and bidentate coordination-mode switch-
Chem. Pharm. Bull., 2004, 52, 477.
27 In this study we consistently used 10 mol% of (S,S)-1, 5 or
6 as a catalyst.
ing using a chiral guanidine for γ-selective allylic amin- 28 A recent review, see: I. W. Hamley, Introduction to Soft
ation, see: J. Wang, J. Chen, C. W. Kee and C.-H. Tan,
Matter–Revised Ed.: Synthetic and Biological Self-Assembling
Angew. Chem., Int. Ed., 2012, 51, 2382.
Materials, Wiley, 2007.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2013