T. Suzuki et al. / Polyhedron 28 (2009) 2287–2293
2293
(b) J. Du Bois, C.S. Tomooka, J. Hong, M.E. Carreira, Acc. Chem. Res. 30 (1997)
364.
[3] (a) H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem., Int. Ed. 40 (2001) 2004;
(b) M. Obata, A. Kitamura, A. Mori, C. Kameyama, J.A. Czaplewska, R. Tanaka, I.
Kinoshita, T. Kusumoto, H. Hashimoto, M. Harada, Y. Mikata, T. Funabiki, S.
Yano, Dalton Trans. (2008) 3292;
(c) S. Mukhopadhyay, J. Lasri, M.A.J. Charmier, M.F.C. Guedes da Silva, A.J.L.
Pombeiro, Dalton Trans. (2007) 5297.
[4] (a) H.-B. Xu, B.-W. Wang, F. Pan, Z.-M. Wang, S. Gao, Angew. Chem., Int. Ed. 46
(2007) 7388;
formed by Ph2Ppy (in complex 2) with those of the five-membered
chelate ring of the related phosphine–imine-type hybrid ligand
Ph2Pqn (in complex 4), it became apparent that the Ph2Ppy ring
was highly strained as indicated by the smaller bond angles, but
the Ir–P/N coordination bond lengths were comparable to those
in the strain-free Ph2Pqn chelate ring. Although the Ir–N bond
and the Ir–N–C angle in the Ph2Ppy complex 2 are similar to those
in the 2-Spy and 2-Sqn complexes analyzed previously [6,22], com-
plex 2 exhibits a dissociation equilibrium of the Ir–N(py) bond in
acetonitrile solution.
(b) T.-F. Liu, D. Fu, S. Gao, Y.-Z. Zhang, H.-L. Sun, G. Su, Y.-J. Liu, J. Am. Chem.
Soc. 125 (2003) 13976;
(c) J. Carranza, C. Brennan, J. Sletten, J.M. Clemente-Juan, F. Lloret, M. Julve,
Inorg. Chem. 43 (2003) 8716;
The pybim complex showed an interesting molecular and crys-
(d) M. Habib, T.K. Marmakar, G. Aromi, J. Ribas-Ariño, H.-K. Fun, S.
Chantrapromma, S.K. Chandra, Inorg. Chem. 47 (2008) 4109.
[5] T. Suzuki, A.G. Dipasquale, J.M. Mayer, J. Am. Chem. Soc. 125 (2003) 10514.
[6] Y. Sekioka, S. Kaizaki, J.M. Mayer, T. Suzuki, Inorg. Chem. 44 (2006) 8173.
[7] M. Kotera, Y. Sekioka, T. Suzuki, Inorg. Chim. Acta 361 (2008) 1479.
[8] (a) V. Pons, D.M. Heinekey, J. Am. Chem. Soc. 125 (2003) 8428;
(b) K.-I. Fujita, M. Nakamura, R. Yamaguchi, Organometallics 20 (2001) 100.
[9] K. Pachhunga, B. Therrien, K.A. Kreisel, G.P.A. Yap, M.R. Kollipara, Polyhedron
26 (2007) 3638.
tal structure. The ligand, pybimꢁ, forms a planar five-membered
chelate ring with an extended p-delocalized system, and the pybim
plane shows a stacking interaction with the neighboring pybim
and Cp* planes to give a characteristic packing structure of the
crystal. Furthermore, the Ir–N(bim) bond is shorter than the Ir–
N(py) bond, because of the stronger electron-donating properties
of the benzimidazole moiety.
We have also examined the photochemical and thermal reactiv-
ities of the complexes described in this study, but they showed a
complicated mixture of unidentified products.
[10] M. Albrecht, T. Scheiring, T. Sixt, W. Kaim, J. Organomet. Chem. 596 (2000) 84.
[11] K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyuhiro, M. Kobayashi, R.
Arakawa, Dalton Trans. (2003) 380.
[12] T. Suzuki, Inorg. Chim. Acta 359 (2006) 2431.
[13] T. Suzuki, Acta Crystallogr., Sect. E 61 (2005) m488.
[14] A. Maisonnet, J.P. Farr, M.M. Olmstead, C.T. Hunt, A.L. Balch, Inorg. Chem. 21
(1982) 3961.
Supplementary data
[15] R.D. Feltham, H.G. Metzer, J. Organomet. Chem. 33 (1971) 347.
[16] (a) PROCESS-AUTO
, Automatic Data Acquisition and Processing Package for
CCDC 711474, 711475, 711476, 711477, and 711478 contain
the supplementary crystallographic data for 1, 2, 3, 4ꢀCH3OH, and
5, respectively. These data can be obtained free of charge via
Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
Imaging Plate Diffractometer, Rigaku Corporation, Akishima, Tokyo, Japan,
1998.;
(b) T. Higashi, SHAPE, Program to obtain Crystal Shape using CCD Camera,
Rigaku Corporation, Tokyo, Japan, 1999.;
(c) CRYSTAL STRUCTURE Ver. 3.6.0, Crystal Structure Analysis Package, Rigaku and
Rigaku/MSC, Akishima, Tokyo, Japan and The Woodlands, TX, USA, 2000–2004.
[17] (a) M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De
Caro, C. Giacovazzo, G. Polidori, R. Spagna, SIR2004, 2005.;
(b) G.M. Sheldrich, SHELXL97, University of Göttingen, Göttingen, Germany,
1997.
[18] P. Covindaswamy, P. Carroll, Y.A. Mozharivskyj, M.R. Kollipara, J. Chem. Sci.
118 (2006) 319.
Acknowledgement
[19] M. Kotera, Y. Sekioka, T. Suzuki, Inorg. Chem. 47 (2008) 3498.
[20] M. Rashidi, K. Kamali, M.C. Jennings, R.J. Puddephatt, J. Organomet. Chem. 690
(2005) 1600.
[21] T. Suzuki, T. Kuchiyama, S. Kishi, S. Kaizaki, M. Kato, Bull. Chem. Soc. Jpn. 75
(2002) 2433.
This work was supported by Grant-in-Aid for Scientific
Research No. 20550064 from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan.
[22] Y. Sekioka, T. Suzuki, Bull. Chem. Soc. Jpn. 79 (2006) 1897.
[23] D.A. Freedman, K.R. Mann, Inorg. Chem. 30 (1991) 836.
[24] N.W. Alcock, P.G. Pringle, P. Bergamini, S. Sostero, O. Traverso, J. Chem. Soc.,
Dalton Trans. (1990) 1553.
References
[25] T. Suzuki, Bull. Chem. Soc. Jpn. 77 (2004) 1869.
[26] S. Ye, W. Kaim, M. Albrecht, F. Lissner, T. Schleid, Inorg. Chim. Acta 357 (2004)
3325.
[1] J. Šima, Coord. Chem. Rev. 250 (2006) 2325.
[2] (a) J.F. Berry, E. Bill, E. Bothe, S.D. George, B. Mienert, F. Neese, K. Wieghardt,
Science 312 (2006) 1937;