and 5-thiomannopyranosylamine (3) exist as 1:2 and 1:3 R:ꢀ
mixtures in water solution, respectively.5 Particularly inter-
esting is the possibility of accessing R-N-linked disaccharide
mimics,6 a goal largely pursued in the design of inhibitors
of the enzymes that process R-linked oligo or polysaccharides
as drug candidates. Actually, the S,N-acetal analogue of
maltose 4r behaved as a low micromolar inhibitor of
glucoamylase G2.7 However, compound 4r was in equilib-
rium with the corresponding ꢀ-anomer 4ꢀ in aqueous
solution, with a relative proportion 1:2.5 in favor of the latter
(Figure 1).
mimetics9,10 with a hemiaminal portion anchored in the
R-configuration, such as the bicyclic R-D-glucopyranose and
R-D-mannopyranose analogues 5 and 6, were prepared and
shown to behave as anomer-selective glycosidase inhibitors.11
We hypothesized that a similar strategy might be applied to
stabilize the elusive R-diastereomer in sp2-iminosugar gly-
cosylamine analogues by replacing the N,O-acetal group by
a gem-diamine functionality (7, Figure 2). This concept has
Figure 2.
Structures of sp2-iminosugars with hemiaminal (5, 6) and
gem-diamine-type pseudoanomeric centers (7). The orbitals involved
in the negative hyperconjugation contribution to the GAE and the
presumably structure of the azacarbonium ion intermediate are
shown.
now been translated into the synthesis of the first mono- and
disaccharide analogues bearing a configurationally and
conformationally stable R-N-glycosidic linkage.
Figure 1. Partial structure of the R-Ν-glycopeptide nephritogenoside
(1) and structures of 5-thiogluco(manno)pyranosylamines (2 and
3) and of the N-linked pseudodisaccharide 4, with indication of
the anomeric ratio.
The gem-diamine structural motif is found in several
biologically active natural and synthetic 2-acylaminopyrro-
lidine and -piperidine derivatives, including sugar-like com-
pounds.12 However, the incorporation of the 2-acylamino
group in these molecules in a diastereoselective manner
continues to be a major problem. Moreover, the resulting
gem-diamines suffer from instability under physiological
conditions.13 In our prototype 7, we expected that the
preformed endocyclic carbamate functionality would direct
Shifting the anomeric equilibrium in C-X-C-Y seg-
ments, where X represents an element with lone pairs, toward
the gauche (R) orientation can be achieved by enhanc-
ing the generalized anomeric effect (GAE).8 We conceived
that the negative hyperconjugation contribution to the GAE
would be particularly favorable when X is an sp2-hybridized
nitrogen atom, due to a very efficient overlapping of the
π-type orbital hosting the lone pair in this case and the σ*
antibonding orbital of the contiguous C-Y bond. As a proof
of principle, configurationally stable sp2-iminosugar glyco-
(10) For recent publications on the synthesis and biological activity of
sp2-iminosugars, see: (a) Aguilar-Moncayo, M.; Ortiz Mellet, C.; Garc´ıa
Ferna´ndez, J. M.; Garc´ıa-Moreno, M. I. J. Org. Chem. 2009, 74, 3585–
3598. (b) Aguilar-Moncayo, M.; Gloster, T. M.; Turkenburg, J. P.; Garc´ıa-
Moreno, M. I.; Ortiz Mellet, C.; Davies, G. J.; Garc´ıa Ferna´ndez, J. M.
Org. Biomol. Chem. 2009, 7, 2738–2747. (c) Brumshtein, B.; Aguilar-
Moncayo, M.; Garc´ıa-Moreno, M. I.; Ortiz Mellet, C.; Garc´ıa Fernandez,
J. M.; Silman, I.; Shaaltiel, Y.; Aviezer, D.; Sussman, J. L.; Futerman, A. H.
ChemBioChem 2009, 10, 1480–1485. (d) Aguilar, M.; D´ıaz-Pe´rez, P.;
Garc´ıa-Moreno, M. I.; Ortiz Mellet, C.; Garc´ıa Ferna´ndez, J. M. J. Org.
Chem. 2008, 73, 1995–1998. (e) Aguilar, M.; Gloster, T. M.; Garc´ıa-Moreno,
M. I.; Ortiz Mellet, C.; Davies, G. J.; Llebaria, A.; Casas, J.; Egido-Gaba´s,
M.; Garc´ıa Fernandez, J. M. ChemBiochem, 2008, 9, 2612–2618. (f)
Benltifa, M; Garc´ıa-Moreno, M. I.; Ortiz Mellet, C.; Garc´ıa Ferna´ndez, J. M.;
Wadouachi, A. Bioorg. Med. Chem. Lett. 2008, 18, 2805–2808. (g) Garc´ıa-
Moreno, M. I.; Ortiz Mellet, C.; Garc´ıa Ferna´ndez, J. M. Tetrahedron 2007,
63, 7879–7884.
(5) Kavlekar, L. M.; Kuntz, D. A.; Wen, X.; Johnston, B. D.; Svensson,
B.; Rose, D. R.; Pinto, B. M. Tetrahedron: Asymmetry 2005, 16, 1035–
1046.
(6) (a) Shing, T. K. M.; Kwong, C. S. K.; Cheung, A. W. C.; Kok,
S. H.-L.; Yu, J.; Cheng, C. H. K. J. Am. Chem. Soc. 2004, 126, 15990–
15992. (b) Gravier-Pelletier, C.; Maton, W.; Le Merrer, Y. Tetrahedron
Lett. 2002, 43, 8285–8288. (c) Johnston, B. D.; Pinto, B. M. J. Org. Chem.
1998, 63, 5797–5800. (d) Dong, W.; Jespersen, T.; Bols, M.; Skrydstrup,
T.; Sierks, M. R. Biochemistry 1996, 35, 2788–2795. (e) Ble´riot, Y.;
Dintinger, T.; Guilo, N.; Tellier, C. Tetrahedron Lett. 1995, 36, 5175–5178.
(f) Knapp, S.; Purabdare, A.; Rupitz, K.; Withers, S. G. J. Am. Chem. Soc.
1994, 116, 7461–7462. (g) Cottaz, S.; Brimacombe, J. S.; Ferguson, M. A. J.
Carbohydr. Res. 1993, 247, 341–345.
(11) (a) Jime´nez Blanco, J. L.; D´ıaz Pe´rez, V. M.; Ortiz Mellet, C.;
Fuentes, J.; Garc´ıa Ferna´ndez, J. M. Chem. Commun. 1997, 1969–1970.
(b) D´ıaz Pe´rez, V. M.; Garc´ıa Moreno, M. I.; Ortiz Mellet, C.; Fuentes, J.;
D´ıaz Arribas, J. C.; Can˜ada, F. J.; Garc´ıa Ferna´ndez, J. M. J. Org. Chem.
2000, 65, 136–143. (c) D´ıaz-Pe´rez, P.; Garc´ıa-Moreno, M. I.; Ortiz Mellet,
C.; Garc´ıa Ferna´ndez, J. M. Eur. J. Org. Chem. 2005, 2903–2913.
(12) For selected references, see: (a) Morgan, I. R.; Yazici, A.; Pyne,
S. G.; Skelton, B. W. J. Org. Chem. 2008, 73, 2943–2946. (b) Nishimura,
Y. Heterocycles 2006, 67, 461–488. (c) Knapp, S.; Yang, C.; Pabbaraja,
S.; Rempel, B.; Reid, S.; Withers, S. G. J. Org. Chem. 2005, 70, 7715–
7720. (d) Brown, J. R.; Nishimura, Y.; Esko, J. D. Bioorg. Med. Chem.
Lett. 2006, 16, 532–536.
(7) Andrews, J. S.; Weimar, T.; Frandsen, T. P.; Svensson, B.; Pinto,
B. M. J. Am. Chem. Soc. 1995, 117, 10799–10804.
(8) Carballeira, L.; Pe´rez-Juste, I. J. Phys. Chem. A 2000, 104, 9362–
9369.
(9) By analogy with the accepted name “iminosugar”, we are using here
the term “sp2-iminosugar” to refer to glycomimetics where the endocyclic
oxygen atom has been replaced by a nitrogen atom with substantial sp2
character, typically a pseudoamide-type nitrogen. For recent monographs
on iminosugars as glycosidase inhibitors, see: (a) Iminosugars: From
Synthesis to Therapeutic Applications; Compain, P., Martin, O. R., Eds.;
Wiley-VCH; Weinheim, 2007. (b) Iminosugars as Glycosidase Inhibitors;
Stu¨tz, A. E., Ed.; Wiley-VCH: Weinheim, 1999.
(13) Kondo, K.; Hayamitsu, A.; Shitara, E.; Kojima, F.; Nishimura, Y.
Bioorg. Med. Chem. Lett. 2001, 9, 1091–1095.
Org. Lett., Vol. 11, No. 15, 2009
3307