Stereo- and Regioselective Allylcyanation of Alkynes
A R T I C L E S
Table 6. Effect of Lewis Acid Cocatalysts on the Reaction of 1a
with 2aa
2a, AlMe2Cl (6 mol %) was found to be optimum to give 3aa
in 96% yield even using allyl cyanide (1a) and 4-octyne (2a)
in stoichiometric amounts and the nickel catalyst in a small
amount (2 mol %) (entry 2 of Table 6). AlMe3, AlMeCl2, and
BPh3 were not as effective as AlMe2Cl (entries 1, 3, and 4),
whereas the absence of Lewis acid gave only a trace amount of
3aa under the modified conditions (entry 5). Use of polar
solvents such as acetonitrile, 1,4-dioxane, and DMF was futile
with this binary catalyst system.
With the nickel/AlMe2Cl catalyst in hand, we reexamined
the scope of the allylcyanation reaction (Table 7). Substituted
allyl cyanides 1e and 1f underwent the equimolar reaction
with 2a with 2 mol % of the nickel catalyst at 50 °C (entries
1 and 2). γ,γ-Disubstituted allyl cyanide such as prenyl
cyanide (1o), which was inert under the conditions without
a Lewis acid cocatalyst, participated in the reaction (entry
3). The scope of alkynes with 1a as a nitrile substrate was
significantly expanded to include various terminal alkynes
(entries 4-10). Complete regioselectivity observed with
terminal alkynes is particularly useful for synthesis of
trisubstituted ethenes (entries 5-10). Functional groups such
as chloro, cyano, and siloxy did not affect the Lewis acid
cocatalysis (entries 8-10).
entry
Lewis acid
yield (%)b
1
2
3
4
5
AlMe3
AlMe2Cl
AlMeCl2
BPh3
6
96c
51
39
2
none
a All reactions were carried out using 1a (1.00 mmol), 2a (1.00
mmol), Ni(cod)2 (20 µmol), P(4-CF3-C6H4)3 (40 µmol), and Lewis acid
(60 µmol) in toluene (1.00 mL) at 50 °C for 24 h. b Determined by GC
using C14H30 as an internal standard. c Isolated yield.
effect of BPh3 as a Lewis acid on the oxidative addition of allyl
cyanides to a nickel(0)/bisphosphine complex has also been
revealed in detail by Jones, making the elemental reaction
preferable kinetically and thermodynamically compared with
competitive oxidative addition of the allylic C-H bond.8b
Because unidentified side reactions of allyl cyanide 1a could
be ascribed to this competitive pathway and thus use of 1a in
excess was essential to obtain allylcyanation products in good
yields, we anticipated that use of a Lewis acid cocatalyst would
be beneficial for the allylcyanation reaction especially with 1a.
Of Lewis acid cocatalysts examined for the reaction of 1a with
The reaction of 1p having two allylic cyanide moieties with
2 mol equiv of 2a gave double allylcyanation products 3pa and
3′pa with BPh3 as a Lewis acid cocatalyst (eq 2). Use of optimal
AlMe2Cl, on the other hand, resulted in a low conversion of 2a
(∼20%). Isomerization of the double bond geometry in 1p under
the reaction conditions was observed and would be responsible
for the formation of 3′pa.
(5) (a) Hua, R.; Takeda, H.; Onozawa, S.-y.; Abe, Y.; Tanaka, M. Org.
Lett. 2007, 9, 263–266. (b) Yamashita, K.-i.; Takeda, H.; Kashiwabara,
T.; Hua, R.; Shimada, S.; Tanaka, M. Tetrahedron Lett. 2007, 48,
6655–6659.
(6) (a) Nozaki, K.; Sato, N.; Takaya, H. J. Org. Chem. 1994, 59, 2679–
2681. (b) Nozaki, K.; Sato, N.; Takaya, H. Bull. Chem. Soc. Jpn. 1996,
69, 1629–1637. (c) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem.
Soc. 2004, 126, 13904–13905. (d) Kobayashi, Y.; Kamisaki, H.;
Yanada, R.; Takemoto, Y. Org. Lett. 2006, 8, 2711–2713. (e) Nakao,
Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567–7576.
(f) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc.
2007, 129, 2428–2429. (g) Kobayashi, Y.; Kamisaka, H.; Takeda, H.;
Yasui, Y.; Yanada, R.; Takemoto, Y. Tetrahedron 2007, 63, 2978–
2989. (h) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew.
Chem., Int. Ed. 2008, 47, 385–387. (i) Hirata, Y.; Tanaka, M.; Nakao,
Y.; Hiyama, T. Tetrahedron 2009, 65, 5037–5050. (j) Yada, A.;
Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931-
3933.
(7) Intramolecular carbocyanation of alkenes: (a) Yasui, Y.; Kamisaki,
H.; Takemoto, Y. Org. Lett. 2008, 10, 3303–3306. (b) Watson, M. P.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594–12595. (c) Nakao,
Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am.
Chem. Soc. 2008, 130, 12874–12875. Carbocyanation of norbornene
and norbornadiene: (d) Nishihara, Y.; Inoue, Y.; Itazaki, M.; Takagi,
K. Org. Lett. 2005, 7, 2639–2641. (e) Nakao, Y.; Yada, A.; Satoh, J.;
Ebata, S.; Oda, S.; Hiyama, T. Chem. Lett. 2006, 790–791. (f)
Nishihara, Y.; Inoue, Y.; Izawa, S.; Miyasaka, M.; Tanemura, K.;
Nakajima, K.; Takagi, K. Tetrahedron 2006, 62, 9872–9882. Car-
bocyanation of 1,2-dienes: (g) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama,
T. J. Am. Chem. Soc. 2009, 131, 6624–6631.
The binary catalysis was found also effective for the
carbocyanation reaction using R-siloxyallyl cyanide (Table
8). The reaction of 1g (1.00 mmol) with 2a (1.00 mmol) in
the presence of Ni(cod)2 (2 mol %), P(4-CF3-C6H4)3 (4 mol
%), and AlMe3 (8 mol %) in toluene at 50 °C for 12 h gave
27, 1834–1840. (h) Swartz, B. D.; Reinartz, N. M.; Brennessel, W. W.;
Garc´ıa, J. J.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 8548–8554.
(9) McKinney, R. J. In Homogeneous Catalysis; Parshall, G. W., Ed.;
Wiley: New York, 1992; pp 42-50.
(10) (a) Guerrieri, F.; Chiusoli, G. P. J. Organomet. Chem. 1968, 15, 209–
215. (b) Ikeda, S.-i.; Sato, Y. J. Am. Chem. Soc. 1994, 116, 5975–
5976. (c) Ikeda, S.-i.; Cui, D.-M.; Sato, Y. J. Org. Chem. 1994, 59,
6877–6878. (d) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am.
Chem. Soc. 2005, 127, 201–209. (e) Nadal, M. L.; Bosch, J.; Vila,
J. M.; Klein, G.; Ricart, S.; Moreto´, J. M. J. Am. Chem. Soc. 2005,
127, 10476–10477.
(11) For preliminary communication see: Nakao, Y.; Yukawa, T.; Hirata,
Y.; Oda, S.; Sato, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116–
7117.
(12) For examples, see: (a) Co´rdoba, R.; Plumet, J. Tetrahedron Lett. 2003,
44, 6157–6159. (b) Hu¨nig, S.; Scha¨fer, M. Chem. Ber. 1993, 126,
177–189. (c) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Prasad,
A. R. Tetrahedron Lett. 2002, 43, 9703–9706.
(8) (a) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.;
Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004,
23, 3363–3365. (b) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D.
J. Am. Chem. Soc. 2004, 126, 3627–3641. (c) van der Vlugt, J. I.;
Hewat, A. C.; Neto, S.; Sablong, R.; Mills, A. M.; Lutz, M.; Spek,
A. L.; Mu¨ller, C.; Vogt, D. AdV. Synth. Catal. 2004, 346, 993–1003.
(d) Wilting, J.; Mu¨ller, C.; Hewat, A. C.; Ellis, D. D.; Tooke, D. M.;
Spek, A. L.; Vogt, D. Organometallics 2005, 24, 13–15. (e) Acosta-
Ram´ırez, A.; Flores-Gaspar, A.; Mun˜oz-Herna´ndez, M.; Are´valo, A.;
Jones, W. D.; Garc´ıa, J. J. Organometallics 2007, 26, 1712–1720. (f)
Acosta-Ram´ırez, A.; Mun˜oz-Herna´ndez, M.; Jones, W. D.; Garc´ıa,
J. J. Organometallics 2007, 26, 5766–5769. (g) Acosta-Ram´ırez, A.;
(13) Miller, K. M.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 15342–
15343.
´
Flores-Alamo, M.; Jones, W. D.; Garc´ıa, J. J. Organometallics 2008,
9
J. AM. CHEM. SOC. VOL. 131, NO. 31, 2009 10969