J. D. Downey et al. / Bioorg. Med. Chem. Lett. 23 (2013) 37–41
41
for their technical expertise. This work was supported by National
Institutes of Health grants R01 DK46205 (R.M.B.), R01 DK37097
(R.M.B.), P50 GM015431 (R.M.B.) and the Integrative Training in
Therapeutic Discovery program T90 DA022873 (J.D.D.). R.M.B. has
a Merit Award from the Department of Veterans Affairs.
References and notes
1. Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer, M. D. Annu. Rev.
Pharmacol. Toxicol. 2001, 41, 661.
2. McGiff, J. C.; Itskovitz, H. D. Circ. Res. 1973, 33, 479.
3. Sugimoto, Y.; Narumiya, S. J. Biol. Chem. 2007, 282, 11613.
4. Katoh, H.; Watabe, A.; Sugimoto, Y.; Ichikawa, A.; Negishi, M. Biochim. Biophys.
Acta 1995, 1244, 41.
5. Irie, A.; Segi, E.; Sugimoto, Y.; Ichikawa, A.; Negishi, M. Biochem. Biophys. Res.
Commun. 1994, 204, 303.
Figure 5. Plasma concentration-time profile of 17 following subcutaneous
administration.
6. System, U. S. R. D.; Health, N. I. o.; Diseases, N. I. o. D. a. D. a. K. In USRDS Annual
Data Report: Atlas of End-Stage Renal Disease in the United States; National
Institutes of Health, National Institute of Diabetes and Digestive and Kidney
Diseases: Bethesda, MD, 2011.
7. Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.;
Day, R.; Ferraz, M. B.; Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer, T. J.;
Group, V. S. N. Engl. J. Med. 2000, 343, 1520.
8. Nussmeier, N. A.; Whelton, A. A.; Brown, M. T.; Langford, R. M.; Hoeft, A.;
Parlow, J. L.; Boyce, S. W.; Verburg, K. M. N. Engl. J. Med. 2005, 352, 1081.
9. Gurwitz, J. H.; Avorn, J.; Bohn, R. L.; Glynn, R. J.; Monane, M.; Mogun, H. JAMA
1994, 272, 781.
10. Ishida, K.; Matsumoto, T.; Taguchi, K.; Kamata, K.; Kobayashi, T. Pflugers Arch.
2012, 463, 593.
11. Rutkai, I.; Feher, A.; Erdei, N.; Henrion, D.; Papp, Z.; Edes, I.; Koller, A.; Kaley, G.;
Bagi, Z. Cardiovasc. Res. 2009, 83, 148.
12. Makino, H.; Tanaka, I.; Mukoyama, M.; Sugawara, A.; Mori, K.; Muro, S.;
Suganami, T.; Yahata, K.; Ishibashi, R.; Ohuchida, S.; Maruyama, T.; Narumiya,
S.; Nakao, K. J. Am. Soc. Nephrol. 2002, 13, 1757.
13. Guan, Y.; Zhang, Y.; Wu, J.; Qi, Z.; Yang, G.; Dou, D.; Gao, Y.; Chen, L.; Zhang, X.;
Davis, L. S.; Wei, M.; Fan, X.; Carmosino, M.; Hao, C.; Imig, J. D.; Breyer, R. M.;
Breyer, M. D. J. Clin. Invest. 2007, 117, 2496.
14. Cao, X.; Peterson, J. R.; Wang, G.; Anrather, J.; Young, C. N.; Guruju, M. R.;
Burmeister, M. A.; Iadecola, C.; Davisson, R. L. Hypertension 2012, 59, 869.
15. Ariumi, H.; Takano, Y.; Masumi, A.; Takahashi, S.; Hirabara, Y.; Honda, K.; Saito,
R.; Kamiya, H. O. Neurosci. Lett. 2002, 324, 61.
Figure 6. Change in mean arterial pressure (MAP) after intravenous infusion of (A)
17-phenyl-x
-trinor PGE2 (n = 3 each, ⁄P = 0.024 by Student’s two-tailed t test) or;
(B) sulprostone (n = 3 each, ⁄⁄P = 0.007 by Student’s two-tailed t test) 2 h after
subcutaneous injection of 5 mg/kg 17 or vehicle.
16. Audoly, L. P.; Tilley, S. L.; Goulet, J.; Key, M.; Nguyen, M.; Stock, J. L.; McNeish, J.
D.; Koller, B. H.; Coffman, T. M. Am. J. Physiol. 1999, 277, H924.
17. Allan, A. C.; Billinton, A.; Brown, S. H.; Chowdhury, A.; Eatherton, A. J.;
Fieldhouse, C.; Giblin, G. M. P.; Goldsmith, P.; Hall, A.; Hurst, D. N.; Naylor, A.;
Rawlings, D. A.; Sime, M.; Scoccitti, T.; Theobald, P. J. Bioorg. Med. Chem. Lett.
2011, 21, 4343.
18. Hall, A.; Billinton, A.; Bristow, A. K.; Brown, S. H.; Chowdhury, A.; Cutler, L.;
Giblin, G. M. P.; Goldsmith, P.; Hayhow, T. G.; Kilford, I. R.; Naylor, A.;
Passingham, B.; Rawlings, D. A. Bioorg. Med. Chem. Lett. 2008, 18, 4027.
19. Hall, A.; Billinton, A.; Brown, S. H.; Clayton, N. M.; Chowdhury, A.; Giblin, G. M.
P.; Goldsmith, P.; Hayhow, T. G.; Hurst, D. N.; Kilford, I. R.; Naylor, A.;
Passingham, B.; Winyard, L. Bioorg. Med. Chem. Lett. 2008, 18, 3392.
20. Hall, A.; Brown, S. H.; Budd, C.; Clayton, N. M.; Giblin, G. M. P.; Goldsmith, P.;
Hayhow, T. G.; Hurst, D. N.; Naylor, A.; Anthony Rawlings, D.; Scoccitti, T.;
Wilson, A. W.; Winchester, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 497.
21. Hallinan, E. A.; Hagen, T. J.; Husa, R. K.; Tsymbalov, S.; Rao, S. N.; vanHoeck, J. P.;
Rafferty, M. F.; Stapelfeld, A.; Savage, M. A.; Reichman, M. J. Med. Chem. 1993,
36, 3293.
22. Abramovitz, M.; Adam, M.; Boie, Y.; Carrière, M.; Denis, D.; Godbout, C.;
Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant,
M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.;
Metters, K. M. Biochim. Biophys. Acta 2000, 1483, 285.
23. Kiriyama, M.; Ushikubi, F.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S.
Br. J. Pharmacol. 1997, 122, 217.
24. Hall, A.; Billinton, A.; Brown, S. H.; Chowdhury, A.; Clayton, N. M.; Giblin, G. M.
P.; Gibson, M.; Goldsmith, P. A.; Hurst, D. N.; Naylor, A.; Peet, C. F.; Scoccitti, T.;
Wilson, A. W.; Winchester, W. Bioorg. Med. Chem. Lett. 2009, 19, 2599.
25. Ostenfeld, T. Neurology Discovery Medicine, Beaumont, C. Drug Metabolism &
Pharmacokinetics Bullman, J. Clinical Pharmacology Modelling & Simulation;
Beaumont, M. Safety Assessment, G. R. D., Harlow1,3 and Ware2,4, United
Kingdom, Jeffrey, P. Drug Metabolism & Pharmacokinetics, Br J Clin Pharmacol.
2012.
26. Chakravarty, P. K.; Naylor, E. M.; Chen, A.; Chang, R. S. L.; Chen, T.-B.; Faust, K.
A.; Lotti, V. J.; Kivlighn, S. D.; Gable, R. A. J. Med. Chem. 1994, 37, 4068.
27. Asada, M.; Obitsu, T.; Kinoshita, A.; Nakai, Y.; Nagase, T.; Sugimoto, I.; Tanaka,
M.; Takizawa, H.; Yoshikawa, K.; Sato, K.; Narita, M.; Ohuchida, S.; Nakai, H.;
Toda, M. Bioorg. Med. Chem. Lett. 2010, 20, 2639.
jugular catheter 2 h after subcutaneous administration of 17. Pre-
treatment of mice with 5 mg/kg 17 administered subcutaneously
significantly attenuated the pressor activity of an IV bolus of
20
Pretreatment with 17 also significantly suppressed pressor activity
of an IV bolus of 10 g/kg sulprostone ( MAP 53.3 2.3 mmHg vs
32.0 3.5 mmHg). To ensure the observed effect was selective for
EP-mediated vasoconstriction, phenylephrine (10 g/kg) was
lg/kg 17PTPGE2 (DMAP 50.3 5.5 mmHg vs 27.0 3.6 mmHg).
l
D
l
shown to be unaffected by pretreatment with 17 (data not shown).
In conclusion, we have identified a novel, dual-selectivity antag-
onist (17) of the mouse EP1 and mouse EP3 receptors possessing an
acylsulfonamide bioisostere for the prototypical carboxylic acid
moiety of EP ligands. 17 was found to have indistinguishable affin-
ity for mEP1 as for mEP3 (mEP1 pKD vs mEP3 pKI, P = 0.40, Stu-
dent’s two-tailed t test). 17 had improved selectively over mEP2
and mTP. 17 was less stable in mouse hepatic microsomes than
7, due in part to hydrolysis of 17 to 7, a problem effectively circum-
vented by subcutaneous administration of 17. Finally, we con-
firmed 17 is a functional antagonist of mEP1 and mEP3 in vivo
by blocking mEP1/mEP3-mediated acute vasopressor activity in
anesthetized mice. While the attenuation of pressor activity ap-
pears to be incomplete, these results recapitulate experiments per-
formed in mice with genetic disruptions of EP1.13 Dual specificity
EP1/EP3 antagonists represent a novel class of potential ESRD ther-
apeutics we hypothesize will be more beneficial than blocking
either receptor alone.
Acknowledgements
28. An, S.; Yang, J.; So, S. W.; Zeng, L.; Goetzl, E. J. Biochemistry 1994, 33, 14496.
29. Norel, X.; de Montpreville, V.; Brink, C. Prostaglandins Other Lipid Mediat. 2004,
74, 101.
The authors acknowledge Kwangho Kim of the Vanderbilt
Institute of Chemical Biology Synthesis Core and Christina Bartlett