Organic Letters
Letter
(14) For selected examples, see: (a) Simlandy, A. K.; Mukherjee, S.
Org. Biomol. Chem. 2016, 14, 5659−5664. (b) Kang, T.-C.; Zhao, X.;
Sha, F.; Wu, X.-Y. RSC Adv. 2015, 5, 74170−74173. (c) Feng, J.; Li,
X.; Cheng, J.-P. Chem. Commun. 2015, 51, 14342−14345. (d) Kumar,
V.; Mukherjee, S. Chem. Commun. 2013, 49, 11203−11205. (e) Cui,
H.-L.; Huang, J.-R.; Lei, J.; Wang, Z.-F.; Chen, S.; Wu, L.; Chen, Y.-C.
Org. Lett. 2010, 12, 720−723. (f) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am.
Chem. Soc. 2008, 130, 7202−7203.
(15) (a) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659−6690.
(b) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev. 2012, 41, 68−
78. (c) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010,
110, 5447−5674.
Physical Chemistry, IISc, Bangalore) for his help with the X-ray
structure analysis. We thank Mr. Soumya Jyoti Singha Roy for
his help with some control experiments during the revision
stage of the manuscript.
REFERENCES
■
(1) Fuson, R. C. Chem. Rev. 1935, 16, 1−27.
(2) For a review, see: (a) Jiang, H.; Albrecht, Ł.; Jørgensen, K. A.
Chem. Sci. 2013, 4, 2287−2300. For remote functionalizations of
different type, see: (b) Vasseur, A.; Bruffaerts, J.; Marek, I. Nat. Chem.
2016, 8, 209−219. (c) Franzoni, I.; Mazet, C. Org. Biomol. Chem.
2014, 12, 233−241.
(16) For selected examples of the use of MBH carbonates in an
enantioselective allylic alkylation reaction, see: (a) Liu, H.-L.; Xie, M.-
S.; Qu, G.-R.; Guo, H.-M. J. Org. Chem. 2016, 81, 10035−10042.
(b) Yao, L.; Wang, C.-J. Adv. Synth. Catal. 2015, 357, 384−388.
(c) Singha Roy, S. J.; Mukherjee, S. Chem. Commun. 2014, 50, 121−
123. (d) Tong, G.; Zhu, B.; Lee, R.; Yang, W.; Tan, D.; Yang, C.; Han,
Z.; Yan, L.; Huang, K.-W.; Jiang, Z. J. Org. Chem. 2013, 78, 5067−
(3) (a) Schneider, C.; Abels, F. Org. Biomol. Chem. 2014, 12, 3531−
3543. (b) Jurberg, I. D.; Chatterjee, I.; Tannert, R.; Melchiorre, P.
Chem. Commun. 2013, 49, 4869−4883. (c) Pansare, S. V.; Paul, E. K.
Chem. - Eur. J. 2011, 17, 8770−8779. (d) Casiraghi, G.; Battistini, L.;
Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076−3154.
(e) Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L. Angew. Chem.,
Int. Ed. 2005, 44, 4682−4698. (f) Casiraghi, G.; Zanardi, F.;
Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929−1972.
(4) (a) Kumar, K. A.; Renuka, N.; Pavithra, G.; Kumar, G. V. J. Chem.
Pharm. Res. 2015, 7, 67−81. (b) Chun, K.; Park, S.-K.; Kim, H. M.;
Choi, Y.; Kim, M.-H.; Park, C.-H.; Joe, B.-Y.; Chun, T. G.; Choi, H.-
M.; Lee, H.-Y.; Hong, S. H.; Kim, M. S.; Nam, K.-Y.; Han, G. Bioorg.
Med. Chem. 2008, 16, 530−535. (c) Yang, H.; Jiang, B.; Reynertson, K.
A.; Basile, M. J.; Kennelly, E. J. J. Agric. Food Chem. 2006, 54, 4114−
4120. (d) Ngameni, B.; Touaibia, M.; Patnam, R.; Belkaid, A.; Sonna,
P.; Ngadjui, B. T.; Annabi, B.; Roy, R. Phytochemistry 2006, 67, 2573−
2579. (e) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev.
2003, 103, 893−930. (f) Ito, C.; Itoigawa, M.; Mishina, Y.; Filho, V.
C.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. J. Nat. Prod. 2003,
́
5072. (e) Companyo, X.; Mazzanti, A.; Moyano, A.; Janecka, A.; Rios,
R. Chem. Commun. 2013, 49, 1184−1186. (f) Chen, G.-Y.; Zhong, F.;
Lu, Y. Org. Lett. 2012, 14, 3955−3957. (g) Zhong, F.; Luo, J.; Chen,
G.-Y.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2012, 134, 10222−10227.
(h) Furukawa, T.; Kawazoe, J.; Zhang, W.; Nishimine, T.; Tokunaga,
E.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011,
50, 9684−9688. (i) Chen, G.-Y.; Zhong, F.; Lu, Y. Org. Lett. 2011, 13,
6070−6073. (j) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen,
Y.-C. Angew. Chem., Int. Ed. 2009, 48, 5737−5740. For reviews, see:
(k) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578−8595.
(l) Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101−
4112.
(17) Zhu, G.; Yang, J.; Bao, G.; Zhang, M.; Li, J.; Li, Y.; Sun, W.;
Hong, L.; Wang, R. Chem. Commun. 2016, 52, 7882−7885.
(19) CCDC 1566910 contains the crystallographic data for 3ag.
These data can be obtained free of charge from the Cambridge
66, 368−371. (g) Estev
́ ́
ez-Braun, A.; Gonzalez, A. G. Nat. Prod. Rep.
1997, 14, 465−475.
(5) (a) Wang, B.-Y.; Liu, X.-Y.; Hu, Y.-L.; Su, Z.-X. Polym. Int. 2009,
58, 703−709. (b) Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E.
Chem. Rev. 2004, 104, 3059−3078.
(20) Block, D. A.; Yu, D.; Armstrong, D. A.; Rauk, A. Can. J. Chem.
1998, 76, 1042−1049.
(6) (a) Priyanka; Sharma, R. K.; Katiyar, D. Synthesis 2016, 48,
2303−2322. (b) Koutoulogenis, G.; Kaplaneris, N.; Kokotos, C. G.
Beilstein J. Org. Chem. 2016, 12, 462−495. (c) Medina, F. G.; Marrero,
(21) (a) Sopbue Fondjo, E.; Sorel, D. D. K.; Jean-de-Dieu, T.;
Joseph, T.; Sylvian, K.; Doriane, N.; Rodolphe, C. J.; Pepin, N.-E.-A.;
Jules-Roger, K.; Arnaud, N. N.; Lucas, S. B. Open Med. Chem. J. 2016,
10, 21−32. (b) Fogue, P. S.; Lunga, P. K.; Fondjo, E. S.; De Dieu
́ ́
J. G.; Macías-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.;
García, A. G. T.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472−
1507. (d) Fedorov, A. Y.; Nyuchev, A. V.; Beletskaya, I. P. Chem.
Heterocycl. Compd. 2012, 48, 166−178.
Tamokou, J.; Thaddee
Mycoses 2012, 55, 310−317.
́
, B.; Tsemeugne, J.; Tchapi, A. T.; Kuiate, J.-R.
(7) Huang, X.; Wen, Y.-H.; Zhou, F.-T.; Chen, C.; Xu, D.-C.; Xie, J.-
W. Tetrahedron Lett. 2010, 51, 6637−6640.
(8) (a) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016,
6, 6207−6213. (b) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res.
2014, 47, 2558−2573. (c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008,
47, 258−297. (d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921−2943.
(9) Jana, R.; Partridge, J. J.; Tunge, J. A. Angew. Chem., Int. Ed. 2011,
50, 5157−5161.
(10) Loh, C. C. J.; Schmid, M.; Peters, B.; Fang, X.; Lautens, M.
Angew. Chem., Int. Ed. 2016, 55, 4600−4604.
(11) For a recent example of γ-propargylation of coumarins, see: Xu,
H.; Laraia, L.; Schneider, L.; Louven, K.; Strohmann, C.; Antonchick,
A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2017, 56, 11232−11236.
(12) For selected examples, see: (a) Liu, W.-B.; Okamoto, N.; Alexy,
E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138,
5234−5237. (b) Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M.
N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193−10197.
(c) Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 12172−
12176.
(13) For an organocatalytic non-enantioselective γ-allylation of
coumarins, see: Liu, X.-L.; Jing, D.-H.; Yao, Z.; Zhang, W.-H.; Liu, X.-
W.; Yang, Z.-J.; Zhao, Z.; Zhou, Y.; Li, X.-N. Tetrahedron Lett. 2015,
56, 5637−5645.
D
Org. Lett. XXXX, XXX, XXX−XXX