Journal of the American Chemical Society
Communication
(6) Okada, Y.; Mukae, T.; Okajima, K.; Taira, M.; Fujita, M.; Yamada,
H. Org. Lett. 2007, 9, 1573.
(7) Okada, Y.; Nagata, O.; Taira, M.; Yamada, H. Org. Lett. 2007, 9,
which experiment also corroborated the generation of 9.
Despite the potential isomerization pathway via an endocyclic
cleavage,25 the isomerization involving exocyclic cleavage is
more probable, as the isomerization reaction in the presence of
Et3SiH provided 11 (eq 9).
In conclusion, we have developed a completely β-selective
glycosylation that does not rely on the NGP strategy. To realize
this, we designed and synthesized the 3,6-O-(o-xylylene)-
bridged axial-rich glucosyl fluoride 2. The β-glycosylation
reaction using 2 and SnCl2−AgB(C6F5)4 catalyst was stably
applicable to several types of alcohols. In these reactions, the
actual catalyst might be SnB(C6F5)4Cl, generated in situ. The
perfect β-selectivity arises from isomerization of the α-anomeric
isomer into the β-isomer, which is catalyzed by HB(C6F5)4 that
is also generated in situ. This novel glycosylation offers a
fundamental concept for new trends in the design of chemical
glycosylation.
2755.
(8) (a) Broddefalk, J.; Bergquist, K.-E.; Kihlberg, J. Tetrahedron 1998,
54, 12047. (b) Yamada, H. Trends Glycosci. Glycotechnol. 2011, 23, 122.
(9) On the other hand, Bols reported enhancement of the reactivity
on axial-rich glycosyl donors induced by silylations. See: (a) Pedersen,
C. M.; Nordstrøm, L. U.; Bols, M. J. Am. Chem. Soc. 2007, 129, 9222.
(b) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Chem. Commun. 2008,
2465.
(10) Yamada, H.; Nagao, K.; Dokei, K.; Kasai, Y.; Michihata, N. J.
Am. Chem. Soc. 2008, 130, 7566.
(11) (a) Poss, A. J.; Smyth, M. S. Synth. Commun. 1989, 19, 3363.
(b) Balbuena, P.; Rubio, E. M.; Mellet, C. O.; Fernandez, J. M. G.
́
Chem. Commun. 2006, 2610. (c) Imamura, A.; Lowary, T. L. Org. Lett.
2010, 12, 3686.
(12) For the conformational descriptor, see: Dixon, H. B. F. Pure
Appl. Chem. 1981, 53, 1901.
(13) (a) Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 431.
(b) Takahashi, Y.; Ogawa, T. Carbohydr. Res. 1987, 164, 277.
(c) Matsumoto, T.; Maeta, H.; Suzuki, K.; Tsuchihashi, G. Tetrahedron
Lett. 1988, 29, 3567. (d) Suzuki, K.; Maeta, H.; Matsumoto, T.;
Tsuchihashi, G. Tetrahedron Lett. 1988, 29, 3571.
(14) Jona, H.; Takeuchi, K.; Mukaiyama, T. Chem. Lett. 2000, 1278.
(15) Mukaiyama, T.; Maeshima, H.; Jona, H. Chem. Lett. 2001, 388.
(16) Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450.
(17) DFT geometry optimizations were performed with the B3LYP
hybrid functional and the 6-31G(d,p) basis set using the Gaussian 03
program: Frisch, M. J.; et al. Gaussian 03, revision E.01; Gaussian, Inc.;
Wallingford, CT, 2004.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and characterization data for all
reactions and products, including H NMR and 13C NMR
1
spectra, the results of DFT calculations, and complete ref 17 (as
SI ref 3). This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
(18) (a) Jensen, H. H.; Bols, M. Acc. Chem. Res. 2006, 39, 259.
(b) McDonnell, C.; Lopez, O.; Murphy, P.; Fernandez Bolanos, J. G.;
́
́
̃
Present Address
Hazell, R.; Bols, M. J. Am. Chem. Soc. 2004, 126, 12374.
(19) Jona, H.; Mandai, H.; Chavasiri, W.; Takeuchi, K.; Mukaiyama,
T. Bull. Chem. Soc. Jpn. 2002, 75, 291.
†Department of Chemistry, Graduate School of Science, Osaka
University, Toyonaka, Osaka 560-0043, Japan.
(20) Asakura, N.; Hirokane, T.; Hoshida, H.; Yamada, H. Tetrahedron
Lett. 2011, 52, 534.
Notes
The authors declare no competing financial interest.
(21) Kreuzer, M.; Thiem, J. Carbohydr. Res. 1986, 149, 347.
(22) (a) Mizuno, M.; Kobayashi, K.; Nakajima, H.; Koya, M.; Inazu,
T. Synth. Commun. 2002, 32, 1665. (b) Kartha, K. P. R.;
Mukhopadhyay, B.; Field, R. A. Carbohydr. Res. 2004, 339, 729.
(23) Similar deactivation has been observed in the perchloric acid-
mediated glycosylation. See: Evans, D. A.; Kaldor, S. W.; Jones, T. K.;
Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001.
(24) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345.
(25) (a) Manabe, S.; Ishii, K.; Hashizume, D.; Koshino, H.; Ito, Y.
Chem.Eur. J. 2009, 15, 6894. (b) Satoh, H.; Manabe, S.; Ito, Y.;
ACKNOWLEDGMENTS
Kakenhi and a SUNBOR grant partially supported this work.
■
REFERENCES
■
(1) (a) Koenigs, W.; Knorr, E. Ber. Dtsch. Chem. Ges. 1901, 34, 957.
(b) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900.
(c) Demchenko, A. V. Synlett 2003, 1225. (d) Jensen, K. J. J. Chem.
Soc., Perkin Trans. 1 2002, 2219. (e) Toshima, K.; Tatsuta, K. Chem.
Rev. 1993, 93, 1503. (f) Banoub, J.; Bundle, D. R. Can. J. Chem. 1979,
57, 2091.
Luthi, H. P.; Laino, T.; Hutter, J. J. Am. Chem. Soc. 2011, 133, 5610.
̈
(c) Manabe, S.; Ishii, K.; Satoh, H.; Ito, Y. Tetrahedron 2011, 67, 9966.
(2) Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984,
25, 1379.
(3) (a) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. 1980, 19,
731. (b) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 4701.
(c) Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990, 694.
(d) Vankar, Y. D.; Vankar, P. S.; Behrendt, M.; Schmidt, R. R.
Tetrahedron 1991, 47, 9985. (e) Hashihayata, T.; Mandai, H.;
Mukaiyama, T. Bull. Chem. Soc. Jpn. 2004, 77, 169. (f) Hashimoto,
S.; Umeo, K.; Sano, A.; Watanabe, N.; Nakajima, M.; Ikegami, S.
Tetrahedron Lett. 1995, 36, 2251.
(4) (a) Hosoya, T.; Ohashi, Y.; Matsumoto, T.; Suzuki, K.
Tetrahedron Lett. 1996, 37, 663. (b) Tamura, S.; Abe, H.; Matsuda,
A.; Shuto, S. Angew. Chem., Int. Ed. 2003, 42, 1021. (c) Ikeda, T.;
Yamada, H. Carbohydr. Res. 2000, 329, 889.
(5) (a) Yamada, H.; Nakatani, M.; Ikeda, T.; Marumoto, Y.
Tetrahedron Lett. 1999, 40, 5573. (b) Yamada, H.; Tanigakiuchi, K.;
Nagao, K.; Okajima, K.; Mukae, T. Tetrahedron Lett. 2004, 45, 5615.
(c) Yamada, H.; Tanigakiuchi, K.; Nagao, K.; Okajima, K.; Mukae, T.
Tetrahedron Lett. 2004, 45, 9207.
6943
dx.doi.org/10.1021/ja301480g | J. Am. Chem. Soc. 2012, 134, 6940−6943