ORGANIC
LETTERS
2009
Vol. 11, No. 16
3694-3697
Domino Synthesis of Bridged Bicyclic
Tetrahydro-1,2-oxazines: Access to
Stereodefined 4-Aminocyclohexanols
Dwayne A. Dias and Michael A. Kerr*
Department of Chemistry, The UniVersity of Western Ontario, London,
Ontario, Canada N6A 5B7
Received July 3, 2009
ABSTRACT
The intramolecular variant of the homo-[3 + 2]-dipolar cycloaddition of nitrones (generated in situ from an aldehyde and a hydroxylamine)
with donor-acceptor cyclopropanes allows for the efficient synthesis of bridged tetrahydro-1,2-oxazines. This domino sequence produces
adducts amenable to reductive N-O bond cleavage producing cis-1,4-aminocyclohexanols in excellent yields.
Domino reaction sequences, aside from their aesthetic appeal,
are increasingly relied upon to generate complex structural
motifs in an efficient and reliable manner. Their use as a
practical synthetic tool is ever increasing, allowing ever more
elaborate structures to be assembled through sometimes awe-
inspiring cascades.1
Annulation reactions of donor-acceptor cyclopropanes
with dipolarphiles have received considerable interest in
recent years, allowing access to a variety of hetero- and
carbocycles. A wide array of dipolar reagents (e.g., alde-
hydes,2 imines,3,4 nitriles,5 azomethine imines,6 diazenes,7
and others) readily react with activated cyclopropanes8 to
form five- and six-membered heterocycles. Recently, we
reported that nitrones 3 react with 1,1-cyclopropanediesters
4 in a stepwise annulative process9 (via putative intermediate
5) resulting in high yields of functionalized tetrahydro-1,2-
oxazines 6 as single regioisomers with excellent diastereo-
selectivity (Scheme 1).10 This process was improved by
generating the nitrone in situ from hydroxylamines 1 and
aldehydes 2.11 We recently employed this reaction sequence
in the total synthesis of phyllantidine.12 Cleavage of the N-O
bond and subsequent ring closure results in the formation
of pyrrolidines 7,13 a central tactic in our synthesis of
nakadomarin A.14
(6) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org.
Lett. 2008, 10, 689.
(7) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de
Meijere, A. J. Org. Chem. 2007, 72, 7504.
(1) (a) Enders, D.; Grondal, C.; Huettl, M. R. M. Angew. Chem., Int.
Ed. 2007, 46, 1570. (b) Padwa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341.
(c) de Meijere, A.; von Zezschwitz, P.; Braese, S. Acc. Chem. Res. 2005,
38, 413. (d) Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76,
1967. (e) Tietze, L. F. Chem. ReV. 1996, 96, 115.
(8) For reviews on the chemistry of donor-acceptor and electrophilic
cyclopropanes, see: (a) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61,
321. (b) Reissig, H.-U.; Zimmer, R. Chem. ReV. 2003, 103, 1151. (c) Wong,
H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T.
Chem. ReV. 1989, 89, 165. (d) Danishefsky, S. Acc. Chem. Res. 1979, 12,
66.
(2) (a) Pohlhaus, P. D.; Johnson, J. S. J. Org. Chem. 2005, 70, 1057.
(b) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S.
J. Am. Chem. Soc. 2008, 130, 8642, and references therein.
(9) With inversion of stereochemistry in the initial cyclopropane ring-
opening event. See: Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2007, 72,
10251.
(3) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M.
Angew. Chem., Int. Ed. 1999, 38, 3186
.
(4) (a) Carson, C. A.; Kerr, M. A. J. Org. Chem. 2005, 70, 8242. (b)
Kang, Y.-B.; Tang, Y.; Sun, X.-L. Org. Biomol. Chem. 2006, 4, 299, and
(10) (a) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed. 2003, 42,
3023. (b) Wanapun, D.; Van Gorp, K. A.; Mosey, N. J.; Kerr, M. A.; Woo,
T. K. Can. J. Chem. 2005, 83, 1752.
references therein
.
(5) (a) Yu, M.; Pagenkopf, B. L. J. Am. Chem. Soc. 2003, 125, 8122.
(b) Yu, M. B. L.; Pagenkopf, B. L. Org. Lett. 2003, 5, 5099.
(11) Young, I. S.; Kerr, M. A. Org. Lett. 2004, 6, 139.
(12) Carson, C. A.; Kerr, M. A. Angew. Chem., Int. Ed. 2006, 45, 6560.
10.1021/ol901454y CCC: $40.75
Published on Web 07/24/2009
2009 American Chemical Society