Hong et al.
SCHEME 1. Difficulties Encountered When Attempting the
Friedel-Crafts Alkylation/Cyclization Cascade Reaction of 1-
Naphthol and R,β-Unsaturated Aldehydes
JOCNote
compounds have been reported, most procedures are
run under harsh conditions with either high concentra-
tions of acids or large amounts of strong Lewis acids, which
can hardly be tolerated by many functional groups.
In particular, the enantioselective synthesis of this chiral
scaffold has been rarely explored.8 Given the importance
of these valuable chromanes and dihydrobenzopyranes
as well as the lack of efficient methods for the prepara-
tion of these important active agents, the development
of a new catalytic asymmetric synthesis of these compounds
appeared to be of great importance. In this context,
we reported the organocatalytic asymmetric synthesis
of chromanes and dihydrobenzopyranes from readily
available 1-naphthols 1 and R,β-unsaturated aldehydes
2 by the Friedel-Crafts alkylation/cyclization cascade
reaction.9
We envisioned that it might be possible to develope an
organocatalytic process10 for the formation of enantioen-
riched chromanes and dihydrobenzopyranes by the initial
Friedel-Crafts alkylation of 1-naphthol to an R,β-unsatu-
rated aldehyde in the presence of an organocatalyst followed
by a subsequent cyclization reaction. However, achieving
this process is thought to be difficult because of the compe-
titive addition of oxygen nucleophiles to R,β-unsaturated
aldehydes (Scheme 1).11
The recent success with the use of diarylprolinol ethers12
prompted us to try the catalyst 3a for the asymmetric
Friedel-Crafts alkylation/cyclization cascade reaction.13
We initially investigated the reaction of 1-naphthol 1a
with cinnamaldehyde 2a in the presence of the catalyst 3a
(10 mol %) and benzoic acid (10 mol %) in THF for 60 h. The
product 4a was formed in low yield probably due to the
formation of a rather stable compound 5 (Table 1, entry 1).14
The same phenomenon was observed in other solvents
(Table 1, entries 2-6). To our delight, the addition of water
led to a dramatic increase of the yield (Table 1, entries 7 and
8).15 Apparently, water is helpful for the hydrolysis of
intermediate 5 to release the catalyst 3a and thus enable
catalytic turnover. The acid additive also had a great effect
on the reaction; almost no reaction occurred when the
stronger p-toluenesulfonic acid (p-TSA) or CF3CO2H
was used in place of benzoic acid (Table 1, entries 9 and
10). The enantioselectivity could be improved greatly by
adding 2-nitrobenzoic acid with a slight decrease of the yield
(Table1, entry 12). The screening of different amine catalysts
showed that diphenylprolinol ether 3a was an effective
organocatalyst for the reaction in terms of the yield and
enantioselectivity (Table1, entries 12-15). To our surprise,
catalyst 3b, a general catalyst for the Michael addition of
R,β-unsaturated aldehyde, was not active in the present
reaction (Table1, entry 13). After finding the appropriate
solvent, acid additive, and catalyst for the reaction, tempera-
ture was next screened. Decreasing the reaction temperature
to 4 °C resulted in an improved enantioselectivity (95:5 er),
but the time required for completion was significantly
(8) (a) Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7, 2285–
2288. (b) Hayashi, T. Pure. Appl. Chem. 2004, 76, 465–475. (c) Rueping, M.;
Sugiono, E.; Merino, E. Chem.;Eur. J. 2008, 14, 6329–6332. (d) Paquin, J.
F.; Defieber, C.; Stephenson, C. R.; Carreira, E. M. J. Am. Chem. Soc. 2005,
127, 10850–10851. (e) Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.;
Carreira, E. M. Angew. Chem. 2007, 119, 9492–9495. Angew. Chem., Int.
Ed. 2007, 46, 9331-9334. (f) Halland, N.; Hansen, T.; Jørgensen, K. A.
Angew. Chem. 2003, 115, 5105–5107. Angew. Chem., Int. Ed. 2003, 42, 4955-
4957. (g) Franke, P. T.; Richter, B.; Jørgensen, K. A. Chem.;Eur. J. 2008,
14, 6317–6321. (h) Rueping, M.; Merino, E.; Sugiono, E. Adv. Synth. Catal.
2008, 350, 2127–2131. (i) Albrecht, y.; Richter, B.; Krawczyk, H.; Jørgensen,
K. A. J. Org. Chem. 2008, 73, 8337–8343.
(9) For a similar type reaction employing NaOH as a reagent, see:
Nakazawa, T.; Furukawa, H.; Torii, K.; Itabashi, K. Nippon Kagaku Kaishi
1989, 2, 244–50.
(10) For selected reviews of organocatalysis, see: (a) Dalko, P. I.; Moisan,
L. Angew. Chem. 2004, 116, 5248–5286. Angew. Chem., Int. Ed. 2004, 43,
5138-5175. (b) Special issue on organocatalysis: Acc. Chem. Res. 2004, 37 (8).
(c) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719–724. (d) List, B.; Yang, J.
W. Science 2006, 313, 1584–1586. (e) List, B. Chem. Commun. 2006, 819–824.
(f) Gaunt, M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug Discovery
Today 2007, 12, 8–27. (g) Special issue on organocatalysis: Chem. Rev. 2007,
107 (12). (h) Dalko, P. I. Enantioselective Organocatalysis; Wiley-VCH:
Weinheim, Germany, 2007. (i) Dondoni, A.; Massi, A. Angew. Chem. 2008,
120, 4716–4739. Angew. Chem., Int. Ed. 2008, 47, 4638-4660.
(11) (a) Bertelsen, S.; DinMr, P.; Johansen, R. L.; Jørgensen, K. A. J. Am.
Chem. Soc. 2007, 129, 1536–1537. (b) Li, H.; Wang, J.; E-Nunu, T.; Zu, L.;
ꢀ
Jiang, W.; Wei, S.; Wang, W. Chem. Commun. 2007, 507–509. (c) Sunden, H.;
Ibrahem, I.; Zhao, G. L.; Eriksson, L.; Cordova, A. Chem.;Eur . J. 2007, 13,
ꢀ
574–581. (d) Li, D. R.; Murugan, A.; Falck, J. R. J. Am. Chem. Soc. 2008,
130, 46–48. (e) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc.
2007, 129, 3830–3831.
(12) For selected leading references, see: (a) Marigo, M.; Wabnitz, T. C.;
Fielenbach, D.; Jørgensen, K. A. Angew. Chem. 2005, 117, 804–807. Angew.
Chem., Int. Ed. 2005, 44, 794-797. (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.;
Shoji, M. Angew. Chem. 2005, 117, 4284–4287. Angew. Chem., Int. Ed. 2005,
44, 4212-4215. (c) Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964–6965. (d) Enders, D.;
(13) For selected reviews of organocatalytic cascade reactions, see: (a)
€
Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem. 2007, 119, 1590–
€
Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861–863. (e)
1601. Angew. Chem., Int. Ed. 2007, 46, 1570-1581. (b) Guo, H. C.; Ma, J. A.
Angew. Chem. 2006, 118, 362–375. Angew. Chem., Int. Ed. 2006, 45, 354-
366. (c) Pellissier, H. Tetrahedron 2006, 62, 1619–1665. (d) Pellissier, H.
Tetrahedron 2006, 62, 2143–2173.
(14) (a) Juhl, K.; Jørgensen, K. A. Angew. Chem. 2003, 115, 1536–1539.
Angew. Chem., Int. Ed. 2003, 42, 1498-1501. (b) Wang, J.; Yu, F.; Zhang, X.;
Ma, D. W. Org. Lett. 2008, 10, 2561–2564.
(15) For a discussion on the effects of water in aminocatalysis, see: (a)
Hayashi, Y. Angew. Chem. 2006, 118, 8281–8282. Angew. Chem., Int. Ed.
2006, 45, 8103-8104. (b) Brogan, A. P.; Dickerson, T. J.; Janda, K. D.
Angew. Chem. 2006, 118, 8278–8280. Angew. Chem., Int. Ed. 2006, 45, 8100-
8102. (c) Blackmond, D. G.; Armstrong, A.; Coombe, V.; Wells, A. Angew.
Chem. 2007, 119, 3872–3874. Angew. Chem., Int. Ed. 2007, 46, 3798-3800.
Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354–
10355. (f) Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen, K. A. Angew.
Chem. 2007, 119, 1119–1122. Angew. Chem., Int. Ed. 2007, 46, 1101-1104.
(g) Chi, Y.; Guo, L.; Kopf, N. A.; Gellman, S. H. J. Am. Chem. Soc. 2008,
ꢀ ^
130, 5608–5609. (h) Garcıa-Garcıa, P.; Ladepeche, A.; Halder, R.; List, B.
Angew. Chem. 2008, 120, 4797–4799. Angew. Chem., Int. Ed. 2008, 47, 4719-
4721. (i) Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Angew. Chem.
2008, 120, 4800–4802. Angew. Chem., Int. Ed. 2008, 47, 4722-4724. (j)
Ibrahem, I.; Rios, R.; Vesely, J.; Hammar, P.; Eriksson, L.; Himo, F.;
ꢀ
Cordova, A. Angew. Chem. 2007, 119, 4588–4590. Angew. Chem., Int. Ed.
2007, 46, 4507-4510. (k) Zhu, S.; Yu, S.; Ma, D. W. Angew. Chem. 2008, 120,
555–558. (l) Angew. Chem., Int. Ed. 2008, 47, 545-548.
6882 J. Org. Chem. Vol. 74, No. 17, 2009