1714
S. D. Kuduk et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1710–1715
Table 5
Permeability, P-gp, and bioanalysis of plasma, brain, and CSF levels for selected compounds
a
b
b
d
Compd
Papp
MDR1
MDR1a
Plasma concnc
(nM)
Brain concnc
(nM)
CSF concnc
(nM)
B/P
CSF/Uplamsa
4g
4x
4z
9d
9x
35
<5
6.6
42
27
0.9
—
0.4
1.4
2.8
0.9
—
1.9
2.9
9.7
915
—
132
4245
9777
5779
—
28
—
0
86
230
6.0
—
—
0.86
0.14
0.70
—
—
0.63
0.37
0
3692
1345
a
b
c
Passive permeability (10ꢀ6 cm/s).
MDR1 Directional Transport Ratio (B to A)/(A to B). Values represent the average of three experiments and interassay variability was 20%.
Sprague–Dawley rats. Oral dose 10 mg/kg in 0.5% methocel, interanimal variability was less than 20% for all values.
Determined using rat plasma protein binding from Table 4.
d
Vehicle
0.1µM 4g
1 µM 4g
Vehicle
0.1µM 9d
1 µM 9d
120
110
100
90
80
70
60
50
40
30
20
10
0
120
110
100
90
80
70
60
50
40
30
20
10
0
-10
-10
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
Log[M], Acetylcholine
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
Log[M], Acetylcholine
Figure 3. Fold potentiation curves for 4g and 9d.
Bridges, T. M.; Kennedy, J. P.; Bradley, S. R.; Peterson, T. E.; Ansari, M. S.;
Baldwin, R. M.; Kessler, R. M.; Deutch, A. Y.; Lah, J. J.; Levey, A. I.; Lindsley, C.
W.; Conn, P. J. J. Neurosci. 2008, 41, 10422.
exposure (CSF:Uplasma = 0.42), worked in this model at 7.4
plasma.13
lM
To confirm that 4g and 9d were behaving similarly with respect
to allosteric modulator 3, their effects on the affinity of acetylcho-
line for the M1 receptor in a functional assay utilizing calcium
mobilization as the readout were evaluated. In CHO cells express-
ing the human M1 receptor, increasing concentrations of both 4g
10. Ma, L.; Seager, M.; Wittmann, M.; Bickel, D.; Burno, M.; Jones, K.; Kuzmick-
Graufelds, V.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.;
Danziger, A.; Regan, C.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley,
C.; Shipe, W.; Kuduk, S. D.; Jacobsen, M.; Sur, C.; Kinney, G.; Seabrook, G.; Ray,
W. J. Proc. Natl. Acad. Sci. USA 2009, 106, 15950.
11. For additional characterization of 1, see: Shirey, J. K.; Brady, A. E.; Jones, P. J.;
Davis, A. A.; Bridges, T. M.; Kennedy, J. P.; Jadhav, S. B.; Menon, U. N.; Xiang, Z.;
Watson, M. L.; Christian, E. P.; Doherty, J. J.; Quirk, M. C.; Snyder, D. H.; Lah, J. J.;
Nicolle, M. M.; Lindsley, C. W.; Conn, P. J. J. Neurosci. 2009, 45, 14271.
12. Yang, F. V.; Shipe, W. D.; Bunda, J. L.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W.;
Ray, W. J.; Ma, L.; Wittmann, M.; Seager, M. W.; Koeplinger, K.; Thompson, C.
D.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2010, 19, 651.
and 9d from 0.1 to 1 lM potentiates the effect of acetylcholine
leading to a leftward shift in the acetylcholine M1 dose–response
curves (Fig. 3). Thus it appears the lack of efficacy observed in
the mouse CFC assay is not due to inability to potentiate the acetyl-
choline dose response.21
13. Kuduk, S. D.; Chang, R. K.; Di Marco, C. N.; Pitts, D. R.; Ray, W. J.; Ma, L.;
Wittmann, M.; Seager, M.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.;
Bilodeau, M. T. A. C. S. Med. Chem. Lett. 2010, 1, 263.
In summary, a series of piperidine and tetrahydroisoquinoline
quinolizidinone carboxylic acids were prepared and evaluated.
The SAR was thoroughly investigated and found that substitution
on the piperidine was generally flat. Potentiators 4g and 9d were
identified as having reasonable potency and both showed high
CNS exposure. However, unlike the case for piperazine derived
quinolizidione modulators such as 3, these piperidine containing
analogs did not show efficacy in a mouse model of episodic mem-
ory. Additional analog work along with more advanced in vitro
studies is ongoing to explain this lack of activity.
14. The tetrahydropyridine variant of 4a was ꢁ2 fold less potent than the saturated
variant and was not investigated further.
O
O
N
OH
N
References and notes
M1 IP = 2.7 µM
1. Bonner, T. I. Trends Neurosci. 1989, 12, 148.
2. Bonner, T. I. Trends Pharmacol. Sci. 1989, 11.
3. Levey, A. I. Proc. Natl. Acad. Sci. 1996, 93, 13451.
4. Geula, C. Neurology 1998, 51, 18.
15. Kuduk, S.D.; Di Marco, C.N.; Cofre, V.; Pitts, D.R.; Ray, W.J.; Ma, L.; Wittmann,
M.; Seager, M.; Koeplinger, KA..; Thompson, C.D.; Hartman, G.D.; Bilodeau, M.T.
Bioorg. Med. Chem. Lett. 2010, 19, accepted.
16. The tetrahydroquinoline variant of 9a was ꢁ10 fold less potent than the
5. Langmead, C. J. Pharmacol. Ther. 2008, 117, 232.
isoquinoline.
6. Bodick, N. C.; Offen, W. W.; Levey, A. I.; Cutler, N. R.; Gauthier, S. G.; Satlin, A.;
Shannon, H. E.; Tollefson, G. D.; Rasumussen, K.; Bymaster, F. P.; Hurley, D. J.;
Potter, W. Z.; Paul, S. M. Arch. Neurol. 1997, 54, 465.
7. Greenlee, W.; Clader, J.; Asbersom, T.; McCombie, S.; Ford, J.; Guzik, H.;
Kozlowski, J.; Li, S.; Liu, C.; Lowe, D.; Vice, S.; Zhao, H.; Zhou, G.; Billard, W.;
Binch, H.; Crosby, R.; Duffy, R.; Lachowicz, J.; Coffin, V.; Watkins, R.; Ruperto,
V.; Strader, C.; Taylor, L.; Cox, K. Il Farmaco 2001, 56, 247.
8. Conn, P. J.; Christopulos, A.; Lindsley, C. W. Nat. Rev. Drug Disc. 2009, 8, 41.
9. For an example of an allosteric activator of the M1 receptor, see Jones, C. K.;
Brady, A. E.; Davis, A. A.; Xiang, Z.; Bubser, M.; Noor-Wantawy, M.; Kane, A. S.;
O
O
N
OH
N
M1 IP = 17 µM