ionization of 5 and ent-5, are in equilibrium via meso-p-allyl
complex 22.16 In the case of low reactive allylic acetates,
Cu(III) intermediates are accepted to have a very short
lifetime. Consequently, the ionization step is rate limiting
(k1, k2 { k7, k6) and virtually no p-allyl equilibration takes
place.17 In the present case, allylic bromides are very reactive
and Cu(III) intermediates presumably equilibrate via p-allyl
intermediates of type 22. Hence the reductive elimination
step became rate determining (k1, k2 c k7, k6). Control
experiments showed that the starting material 5 is racemic
throughout the reaction (see Supporting Informationz), which
is consistent with a dynamic process (k1 = k2). Ruling out the
hypothesis of kinetic resolution implies that the enantio-
discrimination is due to a difference in the rate of the reductive
elimination.18 This difference displaces the equilibration of the
intermediates through the formation of the product with the
higher rate of elimination (i.e. if k6 4 k7 the product will be
enriched in 23). This is consistent with the racemates obtained
using coordinating solvents (entries 8 and 9, Table 2) where
the reductive elimination is faster.19 The same observation was
made with the use of bulky R groups such as secondary
and tertiary alkyl groups, which provided hindered allyl-
intermediates favouring the elimination step (entries 5 and 6,
Table 3).
(26), 91 (100), 65 (34), 53 (22). HRMS (ESI) calcd for C14H18 [M+
186.1409, found 186.1407.
]
1 (a) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1999, 121,
3543–3544; (b) B. M. Trost, R. C. Bunt, R. C. Lemoine and
T. L. Calkins, J. Am. Chem. Soc., 2000, 122, 5968–5976.
2 (a) K. Faber, Chem.–Eur. J., 2001, 7, 5004–5010; (b) J. Steinreiber,
K. Faber and H. Griengl, Chem.–Eur. J., 2008, 14,
8060–8072.
3 (a) B. M. Trost, Chem. Pharm. Bull., 2002, 50, 1–14;
(b) B. M. Trost and R. C. Bunt, J. Am. Chem. Soc., 1994, 116,
4089–4090; (c) B. M. Trost, D. E. Patterson and E. J. Hembre,
J. Am. Chem. Soc., 1999, 121, 10834–10835.
4 Ni catalyzed allylic alkylation: (a) G. Consiglio, O. Piccolo,
L. Roncetti and F. Morandini, Tetrahedron, 1986, 42,
2043–2053; (b) G. Consiglio and R. M. Waymouth, Chem. Rev.,
1989, 89, 257–276; (c) A. F. Indolese and G. Consiglio,
Organometallics, 1994, 13, 2230–2234.
5 Metal catalyzed allylic arylation: Ni catalysis: (a) K. G. Chung,
Y. Miyake and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 2000,
15–18; (b) K. G. Chung, Y. Miyake and S. Uemura, J. Chem. Soc.,
Perkin Trans. 1, 2000, 2725–2729; Ir catalysis: (c) D. Polet,
X. Rathgeb, C. A. Falciola, J.-B. Langlois, S. El Hajjaji and
A. Alexakis, Chem.–Eur. J., 2009, 15, 1205–1216.
6 S. Son and G. C. Fu, J. Am. Chem. Soc., 2008, 130,
2756–2757.
7 For recent reviews, see: (a) A. Alexakis, J. E. Backvall, N. Krause,
¨
O. Pamies and M. Dieguez, Chem. Rev., 2008, 108, 2796–2823;
´
(b) B. L. Feringa, A. J. Minnaard, K. Geurts, T. Den Hartog and
S. R. Harutyunyan, Chem. Rev., 2008, 108, 2824–2852;
(c) A. Alexakis and C. A. Falciola, Eur. J. Org. Chem., 2008,
3765–3780; (d) A. Alexakis, C. Malan, L. Lea, K. Tissot-Croset,
D. Polet and C. A. Falciola, Chimia, 2006, 60, 124–130. See also:
(e) A. Alexakis and C. A. Falciola, Chem.–Eur. J., 2008, 14,
10615–10627; (f) M. A. Kacprzynski, T. L. May, S. A. Kazane
and A. H. Hoveyda, Angew. Chem., Int. Ed., 2007, 46, 4554–4558;
(g) C. A. Falciola, K. Tissot-Croset and A. Alexakis, Angew.
Chem., Int. Ed., 2006, 46, 5995–5998; (h) F. Lopez, A. W. Van
Zijl, A. J. Minnaard and B. L. Feringa, Chem. Commun., 2006,
409–411.
In conclusion, despite a lack of generality, we have disclosed
the first dynamic kinetic asymmetric transformation in copper
catalyzed asymmetric allylic alkylation. This concept was
applied to the alkylation of cyclohex-1-enyl-3-bromide 5 and
was very efficient with primary alkyl Grignard reagents
(ee’s up to 92%). Work is in progress to widen the scope
and the efficiency of the process.
The authors thank the Swiss National Research Foundation
(grant No. 200020-113332) and COST action D40 (SER
contract No. C07.0097) for financial support, as well as BASF
for the generous gift of chiral amines.
8 J. Norinder and J. E. Ba
4094–4102.
9 B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos and A. H.
M. De Vries, Angew. Chem., Int. Ed. Engl., 1997, 36, 2620–2623.
10 A. Alexakis, D. Polet, S. Rosset and S. March, J. Org. Chem.,
2004, 69, 5660–5667.
¨
ckvall, Chem.–Eur. J., 2007, 13,
11 L. Palais, I. S. Mikhel, C. Bournaud, L. Micouin, C. A. Falciola,
M. Vuagnoux-d’Augustin, S. Rosset, G. Bernardinelli and
A. Alexakis, Angew. Chem., Int. Ed., 2007, 46, 7462–7465.
12 (a) A. Alexakis, C. L. Winn, F. Guillen, J. Pitkowicz, S. Roaland
and P. Mangeney, Adv. Synth. Catal., 2003, 345, 345–348;
(b) S. Tominaga, Y. Oi, T. Kato, D. K. An and S. Okamoto,
Tetrahedron Lett., 2004, 45, 5585–5588.
13 The concentration of the reaction mixture could be increased to 0.2 M
if the ether solution of the Grignard reagent was concentrated
beforehand in vacuo and redissolved in dichloromethane. No
change in terms of enantioselectivity was observed. This informa-
tion is particularly important in the case of scaling-up of the
reaction.
Notes and references
y Representative procedure for copper catalyzed allylic alkylation
(entry 1, Table 3): In a flame-dried Schlenk tube under argon
atmosphere, CuTC (7.2 mg, 0.038 mmol, 0.075 equiv.) and L1
(22.2 mg, 0.041 mmol, 0.083 equiv.) were dissolved in dry CH2Cl2
(4 ml) and the solution was stirred for 10 min at room temperature.
Then the substrate 5 (80 mg, 0.5 mmol, 1 equiv.) was added and the
solution was cooled to ꢀ78 1C. After 10 min at this temperature, the
phenethylmagnesium bromide solution (1
M in Et2O, 0.6 ml,
0.6 mmol, 1.2 equiv.) was added dropwise and the reaction mixture
was stirred for 1 h. The reaction was quenched with an aqueous
solution of 1 M HCl (15 ml) and extracted with Et2O (15 ml). The
organic layer was washed with 1 M HCl (15 ml) and brine (15 ml),
dried over Na2SO4, filtered and concentrated in vacuo. The crude
mixture was purified on a silica gel chromatography column (pentane)
to afford product 7 (88 mg, 95%) as a colourless liquid. 7: The
enantiomeric excess was determined by GC on a chiral stationary
phase (Hydrodex B3P column, Method: 60-30-1-140-20-170-5, RT:
102.17 (S), 102.76 (R) min). The enantiomeric excess could also be
determined after derivatization into the corresponding diastereomeric
epoxides (Hydrodex TBDM column, Method: 60-0-1-170-5, RT:
14 L. H. Goering, S. D. Paisley and C. C. Tseng, J. Org. Chem., 1986,
51, 2884–2891.
15 P. Knochel and R. D. Singer, Chem. Rev., 1993, 93, 2117–2188.
16 (a) E. Nakamura and S. Mori, Angew. Chem., Int. Ed., 2000, 39,
3750–3771; (b) M. Yamanaka, S. Kato and E. Nakamura, J. Am.
Chem. Soc., 2004, 126, 6287–6293; (c) E. R. Bartholomew,
S. H. Bertz, S. Cope, M. Murphy and C. A. Ogle, J. Am. Chem.
Soc., 2008, 130, 11244–11245.
17 L. H. Goering, S. S. Kantner and E. P. Seitz, J. Org. Chem., 1985,
50, 5495–5499.
97.99, 99.01, 102.71, 104.25 min). [a]25 = ꢀ0.87 (c = 1.2 in CHCl3,
D
92% ee). 1H NMR (400 MHz, CDCl3, 25 1C): d = 1.34–1.37 (m, 1H),
1.59–1.81 (m, 4H), 1.89 (m, 1H), 2.06 (m, 2H), 2.18 (m, 1H), 2.74
(m, 2H), 5.71–5.76 (m, 2H), 7.25–7.35 (m, 5H) ppm; 13C NMR (100 MHz,
CDCl3, 25 1C): d = 21.6, 25.5, 29.2, 33.4, 34.9, 38.4, 125.8, 127.3,
128.4, 128.5, 131.9, 143 ppm. IR (CHCl3): 71.9, 1453, 1493, 2856,
2923, 3023 cmꢀ1. MS (EI mode) m/z %: 186 (28), 143 (4), 129 (4), 104
18 A referee suggested that ‘‘the two enantiomeric bromides may
interconvert rapidly under the reaction conditions’’. Although this
seems unlikely at ꢀ78 1C, this possibility cannot be ruled out.
19 (a) J. E. Backvall, M. Sellen and B. Grant, J. Am. Chem. Soc.,
¨
1990, 112, 6615–6621; (b) J. E. Backvall and E. S. M. Persson, Acta
¨
Chem. Scand., 1995, 49, 899–906.
ꢁc
This journal is The Royal Society of Chemistry 2009
3870 | Chem. Commun., 2009, 3868–3870