E
S. Harrer et al.
Letter
Synlett
these chiral diols would be challenging to synthesise
through alternative enantioselective methods such as dihy-
droxylation.
(5) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N.
Science 1997, 277, 936. (b) Nielsen, L. P.; Stevenson, C. P.;
Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
1360. (c) Monaco, M. R.; Prévost, S.; List, B. Angew. Chem. Int. Ed.
2014, 53, 8142. (d) Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.;
Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem.
Soc. 2000, 122, 2252. (e) Zhao, L.; Han, B.; Huang, Z.; Miller, M.;
Huang, H.; Malashock, D. S.; Zhu, Z.; Milan, A.; Robertson, D. E.;
Weiner, D. P.; Burk, M. J. J. Am. Chem. Soc. 2004, 126, 11156.
(6) (a) Yang, H.; Zheng, W.-H. Tetrahedron Lett. 2018, 59, 583.
(b) Murray, J. I.; Heckenast, Z.; Spivey, A. C. In Lewis Base Cataly-
sis in Organic Synthesis, Vol. 2; Vedejs, E.; Denmark, S. E., Ed.;
Wiley-VCH: Weinheim, 2016, 459.
In conclusion, we have reported a synergistic sequential
acylative KR of (±)-1,2-diols using Lewis base organocataly-
sis, which provides access to C2-symmetric 1,2-diols in
highly enantioenriched form. Optimal selectivities were ob-
tained using a readily prepared and commercially available
isothiourea Lewis base catalyst (HyperBTM)25,26 and re-
agents (isobutyric anhydride, Hünig’s base) at 0 °C, making
this KR process operationally simple to perform.27
(7) (a) Kagan, H. B.; Fiaud, J. C. In Topics in Stereochemistry, Vol. 18;
Eliel, E. L.; Wilen, S. H., Ed.; Wiley: New York, 1988, 249.
(b) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Shi, C. J. J. Am. Chem.
Soc. 1982, 104, 7294. (c) Greenhalgh, M. D.; Taylor, J. E.; Smith,
A. D. Tetrahedron 2018, 74, 5554. (d) Keith, J. M.; Larrow, J. F.;
Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
(8) (a) Wu, S.-H.; Zhang, L.-Q.; Chen, C.-S.; Girdaukas, G.; Shi, C. J.
Tetrahedron Lett. 1985, 26, 4323. (b) Guo, Z.-W.; Wu, S.-H.;
Chen, C.-S.; Girdaukas, G.; Shi, C. J. J. Am. Chem. Soc. 1990, 112,
4942. (c) Kazlauskas, R. J. J. Am. Chem. Soc. 1989, 111, 4953.
(d) Caron, G.; Kazlauskas, R. J. J. Org. Chem. 1991, 56, 7251.
(e) Caron, G.; Kazlauskas, R. J. Tetrahedron: Asymmetry 1993, 4,
1995. (f) Kaga, H.; Yamauchi, Y.; Narumi, A.; Yokota, K.; Kakuchi,
T. Enantiomer 1998, 3, 203. (g) Kroutil, W.; Kleewein, A.; Faber,
K. Tetrahedron: Asymmetry 1997, 8, 3263.
(9) (a) Vigneron, J.-P.; Dhaenes, M.; Horeau, A. Tetrahedron 1973,
29, 1055. (b) Harned, A. M. Tetrahedron 2018, 74, 3797.
(10) (a) Mizuta, S.; Ohtsubo, Y.; Tsuzuki, T.; Fujimoto, T.; Yamamoto,
I. Tetrahedron Lett. 2006, 47, 8227. (b) Müller, C. E.; Wanka, L.
Jewell K.; Schreiner, P. R. Angew. Chem. Int. Ed. 2008, 47, 6180.
(c) Hrdina, R.; Müller, C. E.; Schreiner, P. R. Chem. Commun.
2010, 46, 2689. (d) Hrdina, R.; Müller, C. E.; Wende, R. C.;
Wanka, L.; Schreiner, P. R. Chem. Commun. 2012, 48, 2498.
(e) Müller, C. E.; Zell, D.; Hrdina, R.; Wende, R. C.; Wanka, L.;
Schuler, S. M.; Schreiner, P. R. J. Org. Chem. 2013, 78, 8465.
(f) Hofmann, C.; Schuler, S. M. M.; Wende, R. C.; Schreiner, P. R.
Chem. Commun. 2014, 50, 1221. (g) Hofmann, C.; Schümann, J.
M.; Schreiner, P. R. J. Org. Chem. 2015, 80, 1972. (h) Kuwano, S.;
Harada, S.; Kang, B.; Oriez, R.; Yamaoka, Y.; Takasu, K.; Yamada,
K.-I. J. Am. Chem. Soc. 2013, 135, 11485. (i) Iwahana, S.; Iida, H.;
Yashima, E. Chem. Eur. J. 2011, 17, 8009. (j) Fujii, K.; Mitsudo, K.;
Mandai, H.; Suga, S. Adv. Synth. Catal. 2017, 359, 2778.
(k) Mandai, H.; Fujii, K.; Yasuhara, H.; Abe, K.; Mitsudo, K.;
Korenaga, T.; Suga, S. Nat. Commun. 2016, 7, 11294.
Funding Information
We thank the EPSRC Centre for Doctoral Training in Critical Resource
Catalysis (CRITICAT, grant code EP/L016419/1, R.M.N.) for funding.
We thank the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013) ERC grant agree-
ment no. 279850 (A.D.S.). A.D.S. thanks the Royal Society for a
Wolfson Research Merit Award. We also thank the EPSRC UK National
Mass Spectrometry Service at Swansea.
E
n
g
i
n
e
eri
n
g
a
n
d
P
h
ysi
c
a
lS
c
i
e
n
c
es
R
esearc
h
C
o
u
n
c
i
l(EP/L
0
1
6
4
1
9/1)Euro
p
e
a
n
R
esearc
h
C
o
u
n
c
i
l (2
7
9
8
5
0)
Acknowledgment
We thank Prof. Kurt Faber (University of Graz) for a number of useful
discussions and for providing us access to his SeKiRe software.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) (a) Bhowmick, K. C.; Joshi, N. N. Tetrahedron: Asymmetry 2006,
17, 1901. (b) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
(c) Hanson, R. M. Chem. Rev. 1991, 91, 437. (d) Tomioka, K. Syn-
thesis 1990, 541. (e) Whitesell, J. K. Chem. Rev. 1989, 89, 1581.
(f) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Claver, C.; Pàmies,
O.; Diéguez, M. Chem. Rev. 2011, 111, 2077. (g) Seebach, D.;
Beck, A. K.; Heckel, A. Angew. Chem. Int. Ed. 2001, 40, 92.
(h) Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45,
1520.
(2) (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483. (b) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006,
1725.
(3) (a) Chatterjee, A.; Joshi, N. N. Tetrahedron 2006, 62, 12137.
(b) Takenaka, N.; Xia, G.-Y.; Yamamoto, H. J. Am. Chem. Soc.
2004, 126, 13198. (c) Yang, H.; Wang, H.; Zhu, C. J. Org. Chem.
2007, 72, 10029.
(4) (a) Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1996, 61, 3888.
(b) Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.;
Ikariya, T. Org. Lett. 1999, 1, 1119. (c) Ohkuma, T.; Utsumi, N.;
Watanabe, M.; Tsutsumi, K.; Arai, N.; Murata, K. Org. Lett. 2007,
9, 2565. (d) Kadyrov, R.; Koenigs, R. M.; Brinkmann, C.;
Voigtlaender, D.; Rueping, M. Angew. Chem. Int. Ed. 2009, 48,
7556.
(11) Selectivity factor (s) is the most commonly used metric to
report the efficiency of a KR, is defined as the rate constant for
the fast reacting enantiomer divided by the rate constant for the
slow reacting enantiomer (s = kfast/kslow) and is calculated by
using the reaction conversion and either the ee of the recovered
substrate
{s = ln[(1−c)(1−eesubstrate)]/ln[(1−c)(1+eesubstrate)]}
or ee of the reaction product
{s = ln[(1−c(1+eeproduct)]/ln[(1−c(1−eeproduct)]}
See references 7a and 7c for more details. For biocatalysed pro-
cesses an analogous metric, E (enantiomeric ratio), is used, see
reference 7b.
(12) Burns, A. S.; Wagner, A. J.; Fulton, J. L.; Young, K.; Zakarin, A.;
Rychnovsky, S. D. Org. Lett. 2017, 19, 2953.
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–F