8650 Inorg. Chem. 2009, 48, 8650–8652
DOI: 10.1021/ic900786b
An Unprecedentedly Huge Square-Grid Copper(II)-Organic Framework Material
Built from a Bulky Pyrene-Derived Elongated Cross-Shaped Scaffold
Chen-Chuan Tsai,† Tzuoo-Tsair Luo,† Jen-Fu Yin,‡ Hong-Cheu Lin,‡ and Kuang-Lieh Lu*,†
†Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, and ‡Department of Materials Science and
Engineering, National Chiao Tung University, Hsin Chu 300, Taiwan
Received April 23, 2009
A new bulky pyrene-derived elongated cross-shaped organic
scaffold was successfully incorporated into a highly porous, non-
interpenetrated square-grid copper(II)-organic framework materi-
topology, if the building blocks are larger, the resulting
networks will expand: the larger the brick, the wider the
network opening.1c Thus, an intriguing research topic is the
synthesis of giant MOFs from the designed supermolecular
building blocks.4 Compared with the use of large metal
clusters as nodes, the creation of giant MOFs from very large
organic scaffolds is challenging and, therefore, rare.4d In
particular, because the desired highly porous giant MOFs
mainly favor some default nets,5 the organic scaffolds only
prefer high symmetry and high rigidity, even if they are very
bulky. Therefore, the following questions arise. How can the
large organic motifs be employed? To what extent can the
networks be extended? How large are the openings? Can the
degree of interpenetration be adequately controlled? To
develop additional innovative solutions, involving these
future giant MOF materials, the design and synthesis of the
very bulky organic ligands will provide a route to these
wonders, especially to the large aromatic, rigid multicarbox-
ylate ligands.2i
2
˚
al with the unprecedentedly huge dimensions of 25.5ꢀ25.5 A ,
while the layer-to-layer NH N interaction leads to a unique
3 3 3
hydrogen-bonded 64.82-nbo net.
A large number of wonders and advances have been made
possible by the synthesis of porous metal-organic frame-
works (MOFs) because they have a wide array of applica-
tions, ranging from gas storage to catalysis and drug
delivery.1 Thanks to several effective engineering strategies,2
systematic fabrication of porous MOFs can be achieved
through designer assembly from judiciously selected molec-
ular building blocks.3 Conceptually, with regard to network
As part of our ongoing efforts in the design and synthesis
of functional crystalline materials,6 herein we prepared a
bulky elongated cross-shaped dicarboxylate building block,
H2CIP, using a condensation-coupling reaction between 2,7-
di-tert-butylpyrene-4,5,9,10-tetraone and 4-carboxybenzal-
dehyde in the presence of NH4OAc (Scheme 1).7 For the
engineering of MOF materials, to our knowledge, this new
ligand is the longest dicarboxylate scaffold known to date.
The advantages of the ligand are apparent. First, the cross-
shaped skeleton with several aromatic rigid rings is bulky and
highly symmetric. It offers more opportunities to achieve
giant MOFs with default nets.5 Second, the dicarboxylate
*To whom correspondence should be addressed. E-mail: lu@chem.sinica.
edu.tw.
(1) (a) Zaworotko, M. D. Nature 2008, 451, 410. (b) Sanderson, K. Nature
ꢀ
2007, 448, 746. (c) Ferey, G. Chem. Soc. Rev. 2008, 37, 191. (d) Hupp, J. T.;
Poeppelmeier, K. R. Science 2005, 309, 2008.
(2) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Science 2003, 423, 705. (b) Desiraju, G. R. Angew.
Chem., Int. Ed. 2007, 46, 8342. (c) Bradshaw, D.; Claridge, J. B.; Cussen, E. J.;
Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273. (d) Rao, C. N. R.;
Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466.
(e) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43,
2334. (f) Tanaka, D.; Kitagawa, S. Chem. Mater. 2008, 20, 922. (g) Moulton, B.;
Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (h) Batten, S. R.; Robson, R.
Angew. Chem., Int. Ed. 1998, 37, 1460. (i) Steel, P. J. Acc. Chem. Res. 2005, 38,
243. (j) Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162.
(3) For examples, see: (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.;
Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. (b) Kawano,
M.; Kawamichi, T.; Haneda, T.; Kojima, T.; Fujita, M. J. Am. Chem. Soc. 2007,
129, 15418.
(5) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M.
Acc. Chem. Res. 2005, 38, 176.
(6) (a) Luo, T. T.; Tsai, H. L.; Yang, S. L.; Liu, Y. H.; Yadav, R. D.; Su,
C. C.; Ueng, C. H.; Lin, L. G.; Lu, K. L. Angew. Chem., Int. Ed. 2005, 44,
6063. (b) Luo, T. T.; Liu, Y. H.; Chan, C. C.; Huang, S. M.; Chang, B. C.; Lu, Y. L.;
Lee, G. H.; Peng, S. M.; Wang, J. C.; Lu, K. L. Inorg. Chem. 2007, 46, 10044.
(c) Luo, T. T.; Hsu, L. Y.; Su, C. C.; Ueng, C. H.; Tsai, T. C.; Lu, K. L. Inorg.
Chem. 2007, 46, 1532. (d) Wu, J. Y.; Yang, S. L.; Luo, T. T.; Liu, Y. H.; Cheng,
Y. M.; Chen, Y. F.; Wen, Y. S.; Lin, L. G.; Lu, K. L. Chem.;Eur. J. 2008, 14,
7136.
ꢀ
(4) For examples, see: (a) Ferey, G.; Mellot-Draznieks, C.; Serre, C.;
ꢀ
Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.
(b) Park, Y. K.; et al. (see the Supporting Information). Angew. Chem., Int. Ed.
2007, 46, 8230. (c) Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.;
::
Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schroder, M. Angew. Chem.,
Int. Ed. 2006, 45, 7358. (d) Cairns, A. J.; Perman, J. A.; Wojtas, L.; Kravtsov, V.;
Alkordi, M. H.; Eddaoudi, M.; Zaworotko, M. J. J. Am. Chem. Soc. 2008, 130,
1560. (e) Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.;
Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 1833. (f) Sun, D.; Ke, Y.; Mattox,
T. M.; Parkin, S.; Zhou, H. C. Inorg. Chem. 2006, 45, 7566.
(7) Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao,
Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453. A detailed synthesis procedure is
given in the Supporting Information.
r
pubs.acs.org/IC
Published on Web 07/30/2009
2009 American Chemical Society