Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
from common intermediate 9. This protocol could assist in the
development of new molecular machines, as, in principle, the
alkyl boronic ester substrate can be easily modified to access
threads of varying length or to generate differentially
substituted dumbbell shaped molecules if deployed in
sequence with the previously disclosed selective method.9
In conclusion, these optimized Suzuki-Miyaura reaction
conditions enable the controlled alkylation of series of 2,6-
dichloropyridines in presence of unsaturation, etherial
linkages, or acetals. The use of bulky Ad2PnBu in combination
with LiOtBu facilitates oxidative addition onto 2-chloro-6-
alkylpyridines, thereby forming exhaustively alkylated
products. Importantly, these reaction conditions minimize β-
hydride elimination processes as well as protodehalogenation
of the starting materials. These conditions have been applied
to gain efficient access to a known [2]rotaxane component.
This project was funded by the American Chemical Society
Petroleum Research Fund Doctoral New Investigator Program
(PRF# 54824-DNI1) and by Duke University. J.M.B. was
supported by the National Institute of General Medical
Sciences (T32GM007105-41). Characterization data were
obtained on instrumentation secured by funding from the NSF
(CHE-0923097, ESI-MS, George Dubay, the Duke Dept. of
Chemistry Instrument Center), or the NSF, the NIH, HHMI, the
North Carolina Biotechnology Center and Duke (Duke
Magnetic Resonance Spectroscopy Center). Jacob Timmerman
and Prof. R. Widenhoefer of Duke University are thanked for
their insights. Ekaterina Khlystova and Brendan Sweeney are
thanked for their contributions to initial investigations.
15, 4308; (f) K. L. Billingsley and S.DLO.I:B10u.c1h03w9a/Cld7,CCA0n0g9e9w7F.
Chem. Int. Ed., 2008, 47, 4695. For 2-pyridyl tin reagents, see:
(g) A. F. Littke, L. Schawarz and G. C. Fu, J. Am. Chem. Soc.,
2002, 124, 6343; (h) T. R. Bailey, Tetrahedron Lett., 1986, 27,
4407. For 2-pyridyl aluminum reagents, see: (i) X. Chen, L.
Zhou, Y. Li, T. Xie and S. Zhou, J. Org. Chem., 2014, 79, 230.
For a select coupling reaction, see: J. Llaveria, D. Leonori, V.
K. Aggarwal, J. Am. Chem. Soc., 2015, 137, 10958.
4
5
For select Negishi and Kumada reactions, see: (a) S.
Malhotra, P. S. Seng, S. G. Koenig, A. J. Deese and K. A. Ford,
Org. Lett., 2013, 15, 3698; (b) A. Fürstner and A. Leitner,
Angew. Chem. Int. Ed., 2003, 42, 308; (c) Y. A. Getmanenko
and R. J. Tweig, J. Org. Chem., 2008, 73, 830. For cross-
electrophile reactions, see: (d) D. A. Everson, J. A. Buonomo
and D. J. Weix, Synlett, 2014, 25, 233.
E. Tyrrell and P. Brookes, Synthesis, 2003, 4, 469.
(a) F.-S. Han, Chem. Soc. Rev., 2013, 42, 5270; (b) N. Miyaura
and A. Suzuki, Chem. Rev., 1995, 95, 2457.
(a) R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41,
1461; (b) K. Billingsley, K. W. Anderson and S. L. Buchwald,
Angew. Chem. Int. Ed., 2006, 45, 3484; (c) L. Li, S. Zhao, A.
Joshi-Pangu, M. Diane and M. R. Biscoe, J. Am. Chem. Soc.,
2014, 136, 14027; (d) M. Jouffroy, D. N. Primer, and G. A.
Molander, J. Am. Chem. Soc., 2016, 138, 475.
6
7
8
9
S. Laulhé, J. M. Blackburn and J. L. Roizen, Org. Lett., 2016,
18, 4440.
10 (a) T. Itoh and T. Mase, Tetrahedron Lett., 2005, 3573; (b) V.
F. Slagt, A. H. M. de Vries, J. G. de Vries and R. M. Kellogg,
Org. Process Res. Dev., 2009, 14, 30.
11 S. D. Dreher, P. G. Dormer, D. L. Sandrock and G. A.
Molander, J. Am. Chem. Soc., 2008, 130, 9257.
12 (a) C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-
H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder, L. Liu,
Angew. Chem. Int. Ed., 2012, 51, 528; (b) Q. Li, C. W. Liskey, J.
F. Hartwig, J. Am. Chem. Soc. 2014, 136, 8755–8765. (c) N.
Fleury-Brégeot, M. Presset, F. Beaumard, V. Colombel, D.
Oehlrich, F. Rombouts and G. A. Molander, J. Org. Chem.,
2012, 77, 10399.
13 (a) F. Paul, J. Pratt and J. F. Hartwig, J. Am. Chem. Soc., 1994,
116, 5969; (b) J. F. Hartwig and F. Paul, J. Am. Chem. Soc.,
1995, 117, 5373; (c) J. F. Hartwig, Angew. Chem. Int. Ed.,
1998, 37, 2046.
14 (a) J. F. Hartwig, S. Richards, D. Barañano and F. Paul, J. Am.
Chem. Soc., 1996, 118, 3626; (b) J. F. Hartwig, Inorg. Chem.
2007, 46, 1936.
15 S. Reimann, P. Ehlers, S. Parpart, A. Surkus, A. Spannenberg,
P. Langer, Tetrahedron, 2015, 71, 5371.
16 (a) W. M. Haynes, ed., CRC Handbook of Chemistry and
Physics, 97th Edition (Internet Version 2017), CRC
Press/Taylor & Francis, Boca Raton, FL; (b) W. Reeve, C. M.
Erikson and P. F. Aluotto, Can. J. Chem., 1979, 57, 2747.
17 C. Amatore, A. Jutland and G. Le Duc, Chem. Eur. J., 2012, 18,
6616.
Notes and references
1
(a) H. Schinz, L. Ruzicka, U. Geyer and V. Prelog, Helv. Chim.
Acta, 1946, 29, 1524; (b) A. Fürstner and A. Leitner, Angew.
Chem. Int. Ed., 2003, 42, 308; (c) J. M. Davis, A. Truong and A.
D. Hamilton, Org. Lett., 2005, 7, 5405; (d) S. M. Goldup, D. A.
Leigh, P. J. Lusby, R. T. McBurney, A. M. Z. Slawin, Angew.
Chem. Int. Ed., 2008, 47, 6999; (e) Y.-H. Zhang, B.-F. Shi and
J.-Q. Yu J. Am. Chem. Soc., 2009, 131, 5072; (f) A. E. Goetz
and N. K. Garg, Nature Chemistry, 2013, 5, 54.
For select C–H activation processes, see: (a) J. C. Lewis, R. G.
Bergman, and J. A. Ellman, J. Am. Chem. Soc., 2007, 129,
5332; (b) Y. Nakao, Y. Yamada, N. Kashihara and T. Hiyama, J.
Am. Chem. Soc., 2010, 132, 13666. For select examples that
involve distinct bond-forming and deprotonation steps, see:
(c) J. L. Jeffrey and R. Sarpong, Org. Lett., 2012, 14, 5400;
(d) Q. Chen, T. León and P. Knochel, Angew. Chem. Int. Ed.,
2014, 53, 8746; (e) I. Hyodo, M. Tobisu and N. Chatani, Chem.
Asian J., 2012, 7, 1357. For select Minisci type-pathways, see:
(f) J. Jin and D. W. C. MacMillan, Nature, 2015, 525, 87; (g) R.
Gianatassio, S. Kawamura, C. L. Eprile, K. Foo, J. Ge, A. C.
Burns, M. R. Collins and P. S. Baran, Angew. Chem. Int. Ed.,
2014, 53, 9851; (h) F. O’Hara, D. G. Blackmond and P. S.
Baran, J. Am. Chem. Soc., 2013, 135, 12122.
2
18 C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu and L. Liu, Chem. Commun.,
2011, 50, 3904.
19 (a) F. G. Bordwell and F. J. Cornforth, J. Org. Chem., 1978, 43,
1763; (b) W. N. Olmstead, Z. Margolin and F. G. Bordwell, J.
Org. Chem., 1980, 45, 3295; (c) P. J. Guthrie, J. Cossar and A.
Klym, Can. J. Chem., 1987, 65, 2154.
3
For select 2-pyridyl zinc reagents, see: (a) J. Cornella, J. T.
Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan, R.
Gianatassio, M. Schmidt, M. D. Eastgate and P. S. Baran, J.
Am. Chem. Soc., 2016, 138, 2174; (b) J. R. Colombe, S.
Bernhardt, C. Stathakis, S. L. Buchwald and P. Knochel, Org.
Lett., 2013, 15, 5754; (c) M. R. Luzung, J. S. Patel and J. Yin, J.
Org. Chem., 2010, 75, 8330. For select 2-pyridyl boron
reagents, see: (d) G. R. Dick, E. M. Woerly and M. D. Burke,
20 S. Kotha, G. T. Waghule and M. E. Shirbhate, Eur. J. Org.
Chem., 2014, 984.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins