6108
S. Kobatake et al. / Tetrahedron 65 (2009) 6104–6108
temperature. The reaction was stopped by the addition of water.
The solution was extracted with ether. The organic layer was
washed with water, dried over MgSO4, filtered, and concentrated.
The residue was purified by silica gel column chromatography with
hexane/ethyl acetate (9:1) as the eluent. Compound 9 was obtained
as a colorless solid by further purification by HPLC (0.81 g, 42%).
578.0809. Anal. Calcd for C29H20F6O2S2: C, 60.20; H, 3.48%. Found:
C, 60.27; H, 3.56%.
Acknowledgements
This work was partly supported by a Grant-in-Aid for Scientific
Research (C) (No. 19550142) from the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan, and PRESTO, Japan
Science and Technology Agency.
1H NMR (300 MHz, CDCl3, TMS)
d¼1.95 (s, 3H, CH3), 1.96 (s, 3H,
CH3), 3.49 (s, 3H, OCH3), 5.20 (s, 2H, OCH2O), 7.05 (d, J¼8.8 Hz, 2H,
Ar), 7.17 (s, 1H, thienyl H), 7.28 (s, 1H, thienyl H), 7.30 (t, J¼7.4 Hz,
1H, Ar), 7.39 (t, J¼7.4 Hz, 2H, Ar), 7.46 (d, J¼8.8 Hz, 2H, Ar), 7.54 (d,
References and notes
J¼7.4 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3):
¼14.5, 14.6, 56.1, 94.4,
d
111.1 (t of quintet, JC–F¼271, 271, 25, 25, 25, 25 Hz), 116.2 (tt, JC–
1. Brown, G. H. Photochromism; Wiley-Interscience: New York, NY, 1971.
2. Du¨rr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems Rev. Ed.;
Elsevier: Amsterdam, 2003.
3. Kobatake, S.; Irie, M. Annu. Rep. Prog. Chem., Sect. C 2003, 99, 272–313.
4. Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985–996.
5. Irie, M. Chem. Rev. 2000, 100, 1685–1716.
¼257, 257, 24, 24 Hz), 116.7, 121.5, 122.4, 125.6, 125.7, 125.9, 126.9,
F
127.3, 127.9, 129.0, 133.3, 136.0, 140.5, 141.3, 142.0, 142.2, 157.1.
HRMS (FAB) calcd for C29H22F6O2S2 580.0965, found 580.0985.
6. Myles, A. J.; Branda, N. R. Adv. Funct. Mater. 2002, 12, 167–173.
7. Kobatake, S.; Irie, M. Bull. Chem. Soc. Jpn. 2004, 77, 195–210.
8. Tian, H.; Wang, S. Chem. Commun. 2007, 781–792.
9. Irie, M.; Matsuda, K. Memories. In Electron Transfer in Chemistry; Balzani, V., Ed.;
Wiley-VCH: Weinheim, 2001; Vol. 5, pp 215–242.
10. Irie, M. High-Density Optical Memory and Ultrafine Photofabrication. In Nano-
Optics; Kawata, S., Ohtsu, M., Irie, M., Eds.; Springer: Berlin, 2002; pp 137–150.
11. Tian, H.; Feng, Y. J. Mater. Chem. 2008, 18, 1617–1622.
12. Irie, M. Photoswitchable Molecular Systems Based on Diarylethenes. In Mo-
lecular Switchings; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2001; pp 37–62.
13. Matsuda, K.; Irie, M. Photoswiching of Intermolecular Magnetic Interaction
Using Photochromic Compounds. In Chemistry of Nano-molecular Systems-To-
ward the Realization of Molecular Devices; Nakamura, T., Matsumoto, T., Tada, H.,
Sugiura, K. I., Eds.; Springer: Berlin, 2002; pp 25–40.
14. Tan, W.; Zhang, Q.; Zhang, J.; Tian, H. Org. Lett. 2009, 11, 161–164.
15. Yao, J.; Hashimoto, K.; Fujishima, A. Nature 1992, 355, 624–626.
16. Fernandez-Acebes, A.; Lehn, J. M. Adv. Mater. 1999, 11, 910–913.
17. Irie, M.; Kobatake, S.; Horichi, M. Science 2001, 291, 1769–1772.
18. Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Nature 2007, 446, 778–781.
19. Irie, M. Bull. Chem. Soc. Jpn. 2008, 81, 917–926.
20. Uchida, K.; Sukata, S.; Matsuzawa, Y.; Akazawa, M.; de Jong, J. J. D.; Katsonis, N.;
Kojima, Y.; Nakamura, S.; Areephong, J.; Meetsma, A.; Feringa, B. L. Chem.
Commun. 2008, 326–328.
21. Vandewyer, P. H.; Hoefnagels, J.; Smets, G. Tetrahedron 1969, 25, 3251–3266.
22. Sueishi, Y.; Ohcho, M.; Nishimura, N. Bull. Chem. Soc. Jpn. 1985, 58, 2608–2613.
23. Wetzler, D. E.; Aramendia, P. F.; Japas, M. L.; Fernandez-Prini, R. Phys. Chem.
Chem. Phys. 1999, 1, 4955–4959.
24. Wojtyk, J. T. C.; Wasey, A.; Kazmaier, P. M.; Hoz, S.; Buncel, E. J. Phys. Chem. A
2000, 104, 9045–9055.
4.2.2. 1-(2-Methyl-5-(4-hydroxyphenyl)thien-3-yl)-2-(2-methyl-5-
phenylthien-3-yl)perfluorocyclopentene (10)
Into a flask containing diarylethene 9 (0.70 g, 1.2 mmol) in THF
(15 mL) was added concd hydrochloric acid (2 mL), and the solution
was stirred overnight at room temperature. The solution was
neutralized and extracted with ether. The organic layer was washed
with water, dried over MgSO4, filtered, and concentrated. The res-
idue was purified by silica gel column chromatography with hex-
ane/ethyl acetate (8:2) as the eluent. Compound 10 was obtained as
a solid by further purification by HPLC (0.59 g, 92%).
1H NMR (300 MHz, CDCl3, TMS)
d
¼1.94 (s, 3H, CH3), 1.96 (s, 3H,
CH3), 4.90 (br, 1H, OH), 6.85 (d, J¼8.1 Hz, 2H, Ar), 7.16 (s, 1H, thienyl
H), 7.28 (s, 1H, thienyl H), 7.30 (t, J¼7.6 Hz, 1H, Ar), 7.38 (t, J¼7.6 Hz,
2H, Ar), 7.42 (d, J¼8.1 Hz, 2H, Ar), 7.54 (d, J¼7.6 Hz, 2H, Ar). 13C NMR
(75 MHz, CDCl3)
d
¼14.5, 14.6, 111.1 (t of quintet, JC–F¼271, 271, 25,
25, 25, 25 Hz), 115.9, 116.2 (tt, JC–F¼257, 257, 24, 24 Hz), 121.3, 122.4,
125.6, 125.7, 125.9, 126.4, 127.2, 127.9, 129.0, 133.3, 136.1, 140.3,
141.3, 142.0, 142.2, 155.5. IR (KBr):
(FAB) calcd for C27H18F6OS2 536.0703, found 536.0701.
n
¼3380 cmꢁ1 (br, OH); HRMS
4.2.3. 1-(2-Methyl-5-(4-acetoxyphenyl)thien-3-yl)-2-(2-methyl-5-
phenylthien-3-yl)perfluorocyclopentene (3a)
Into a flask were added diarylethene 10 (0.27 g, 0.50 mmol),
acetic anhydride (0.24 g, 2.4 mmol), and pyridine (0.080 g,
1.0 mmol). The solution was stirred overnight at room temperature.
The solution was extracted with ether. The organic layer was
washed with water, dried over MgSO4, filtered, and concentrated.
The residue was purified by silica gel column chromatography with
hexane/ethyl acetate (8:2) as the eluent. Compound 3a was
obtained as a solid by further purification by HPLC (0.24 g, 83%).
25. Nishikiori, H.; Tanaka, N.; Takagi, K.; Hujii, T. Res. Chem. Intermed. 2003, 29,
485–493.
26. Liang, Y. C.; Dvornikov, A. S.; Rentzepis, P. M. J. Photochem. Photobiol., A 1999,
125, 79–84.
27. Irie, M.; Sayo, K. J. Phys. Chem. 1992, 96, 7671–7674.
28. Yamaguchi, T.; Uchida, K.; Irie, M. J. Am. Chem. Soc. 1997, 119, 6066–6071.
29. de Jong, J. J. D.; Lucas, L. N.; Hania, R.; Pugzlys, A.; Kellogg, R. M.; Feringa, B. L.;
Duppen, K.; van Esch, J. H. Eur. J. Org. Chem. 2003, 1887–1893.
30. Tanifuji, N.; Irie, M.; Matsuda, K. Chem. Lett. 1997, 36, 1232–1233.
31. Yan, S. F.; Belov, V. N.; Bossi, M. L.; Hell, S. W. Eur. J. Org. Chem. 2008, 2531–2538.
32. Nakamura, S.; Irie, M. J. Org. Chem. 1988, 53, 6136–6138.
33. Kobatake, S.; Terakawa, Y. Chem. Commun. 2007, 1698–1700.
34. Kobatake, S.; Imagawa, H.; Nakatani, H.; Nakashima, S. New J. Chem. 2009, 33,
1362–1367.
35. (a) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH: New
York, NY, 1988; pp 365–371; (b) Reichardt, C. Chem. Rev. 1994, 94, 2319–2358.
36. Hantzsch, A. Ber. Dtsch. Chem. Ges. 1922, 55, 953–979.
37. Irie, M.; Lifka, T.; Kobatake, S.; Kato, N. J. Am. Chem. Soc. 2000, 122, 4871–4876.
38. Browne, W. R.; de Jong, J. J. D.; Kudernac, T.; Walko, M.; Lucas, L. N.; Uchida, K.;
van Esch, J. H.; Feringa, B. L. Chem.dEur. J. 2005, 11, 6430–6441.
39. Arai, R.; Uemura, S.; Irie, M.; Matsuda, K. J. Am. Chem. Soc. 2008, 130, 9371–9379.
40. Yamamoto, S.; Matsuda, K.; Irie, M. Org. Lett. 2003, 5, 1769–1772.
1H NMR (300 MHz, CDCl3, TMS)
d¼1.952 (s, 3H, CH3), 1.959 (s,
3H, CH3), 2.32 (s, 3H, COCH3), 7.11 (d, J¼8.8 Hz, 2H, Ar), 7.24 (s, 1H,
thienyl H), 7.28 (s, 1H, thienyl H), 7.30 (t, J¼7.4 Hz, 1H, Ar), 7.39 (t,
J¼7.4 Hz, 2H, Ar), 7.54 (d, J¼8.8 Hz, 2H, Ar), 7.54 (d, J¼7.4 Hz, 2H,
Ar). 13C NMR (75 MHz, CDCl3)
d
¼14.5, 21.1, 111.0 (t of quintet, JC–
¼271, 271, 25, 25, 25, 25 Hz), 116.2 (tt, JC–F¼257, 257, 24, 24 Hz),
F
122.2, 122.3, 122.6, 125.6, 125.8, 125.9, 126.7, 127.9, 129.0, 131.2,
133.3, 136.1, 141.3, 141.5, 142.3, 150.3, 169.4. IR (KBr):
(s, C]O); HRMS (FAB) calcd for C29H20F6O2S2 578.0809, found
n
¼1770 cmꢁ1