LETTER
(–)-Cubebol by Cyclopropanation of an Unsaturated Epoxide
1731
LDA, then
TPAP
NMO
OH
LiAlH4
HCO2CH2CF3
LTMP
90%
6
Et2O
reflux, 12 h
50%
Et2O
–78 °C, 3 h
55%
1
O
O
OH
94%
OH
O
O
10
11
12
18
17
16
MsCl, Et3N, CH2Cl2
0 °C, 0.5 h
Scheme 5 Intramolecular cyclopropanation of epoxide 16
then LiCl, acetone
r.t., 12 h
In summary, we have reported a concise, 7–8 step synthe-
sis of (–)-cubebol from l-menthone, which highlights the
ability of lithiated epoxide methodology to efficiently cy-
clopropanate tethered alkenes bearing additional stereo-
centres. Importantly, the facial selectivity is not
influenced by the additional stereocentres, but rather is
determined solely by the epoxide stereochemistry.
79%
Mg, THF
CuI (10 mol%)
NaOH
Cl
MeOH
O
Cl
r.t., 1.5 h
82%
OH
O
(0.8 equiv)
–78 to 0 °C, 3 h
49%
Cl
6
14
13
Scheme 3 Synthesis of unsaturated terminal epoxide 6
Acknowledgment
and reaction of the derived Grignard reagent with com-
mercially available (R)-epichlorohydrin under copper
catalysis13 gave the chlorohydrin 14 (49%), which was
ring-closed to the desired epoxide 6 (82%).
We thank the Higher Education Commission of Pakistan for stu-
dentship support (to S.S.).
References and Notes
In the event, epoxide 6 underwent reaction with lithium
2,2,6,6-tetramethylpiperidide (LTMP, 2 equiv) to give a
single cyclopropyl alcohol 15 (90%, Scheme 4),14 which
was oxidised to pivotal ketone 2 (95%) using tetrapropyl-
ammonium perruthenate (TPAP; 5 mol%)–NMO (2
equiv). Cyclopropyl alcohol 15 could also be prepared
more directly13 from chlorohydrin 14 in 71% yield, using
n-BuLi (3.5 equiv) and 2,2,6,6-tetramethylpiperidine (2.5
equiv). Addition of methylcerium to ketone 2 according to
Fürstner4 and Fehr5 gave cubebol (1; 85%).
(1) Tanaka, A.; Tanaka, R.; Uda, H.; Yoshikoshi, A. J. Chem.
Soc., Perkin Trans. 1 1972, 1721.
(2) Velazco, M. I.; Wuensche, L.; Deladoey, P. US Patent,
6214788, 2001; Chem. Abstr. 2000, 133, 265959.
(3) (a) Torri, S.; Okamoto, T. Bull. Chem. Soc. Jpn. 1976, 49,
771. (b) See also: Piers, E.; Britton, R. W.; de Wall, W. Can.
J. Chem. 1971, 49, 12.
(4) Fürstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006.
(5) Fehr, C.; Galindo, J. Angew. Chem. Int. Ed. 2006, 45, 2901.
(6) (a) Hodgson, D. M.; Chung, Y. K.; Paris, J.-M. J. Am. Chem.
Soc. 2004, 126, 8664. (b) Hodgson, D. M.; Chung, Y. K.;
Nuzzo, I.; Freixas, G.; Kulikiewicz, K. K.; Cleator, E.; Paris,
J.-M. J. Am. Chem. Soc. 2007, 129, 4456.
TPAP, NMO
4 Å MS
(7) For a recent example in natural product synthesis, see:
Tashiro, T.; Mori, K. Tetrahedron: Asymmetry 2008, 19,
1215.
LTMP
t-BuOMe
0 °C to r.t., 20 h
90%
CH2Cl2
r.t., 1.5 h
95%
OH
O
(8) (a) Nwaukwa, S. O.; Keehn, P. M. Tetrahedron Lett. 1982,
23, 35. (b) Malkov, A. V.; Baxendale, I. R.; Bella, M.;
Langer, V.; Fawcett, J.; Russell, D. R.; Mansfield, D. J.;
Valko, M.; Kocovsky, P. Organometallics 2001, 20, 673.
(9) (a) Formylation using HCO2Et–NaH is known to lead to
cis-11 preferentially (S:R = 7:93 at C-6), see: Kashima, C.;
Miwa, Y.; Shibata, S.; Nakazono, H. J. Heterocycl. Chem.
2002, 39, 1235. (b) For kinetic formylation, see: Zayia,
G. H. Org. Lett. 1999, 1, 989.
15
6
MeLi, CeCl3
OH
THF
–78 °C, 1 h
85%
O
1
2
(10) (a) Dreiding, A. S.; Hartman, J. A. J. Am. Chem. Soc. 1953,
75, 939. (b) Searles, S. Jr.; Mortensen, H. E. J. Org. Chem.
1962, 27, 1979. (c) Vig, O. P.; Bhatia, M. S.; Verma, A. K.;
Matta, K. L. J. Indian Chem. Soc. 1970, 47, 277.
Scheme 4 Synthesis of (–)-cubebol (1)
It was established that the configuration at the epoxide
was the sole factor determining face selectivity in the
above cyclopropanation, by reaction of epoxide 16 [pre-
pared in an identical manner to epoxide 6 from allylic
chloride 13, but using (S)-epichlorohydrin] with LTMP,
which gave cyclopropyl alcohol 1715 (90%, Scheme 5).
The presence of the i-Pr group on the same face of the al-
kene which undergoes cyclopropanation did not reduce
the efficiency of this transformation. The corresponding
ketone 18, prepared using TPAP–NMO as earlier, gave
data in full accord with that reported by Fürstner.4
(11) Characterisation Data for (3R,6S)-6-Isopropyl-3-methyl-
2-methylenecyclohexanol (12): [a]D25 –100.9 (c = 1.42,
CHCl3). IR: 3480 (br), 3067 (w), 2958 (s), 2933 (s), 2870
(m), 1644 (w), 1475 (w), 1450 (w), 1029 (m), 948 (m), 905
(s) cm–1. 1H NMR (400 MHz, CDCl3): d = 5.02 (d, J = 1.0
Hz, 1 H, =CH2), 4.73 (d, J = 1.5 Hz, 1 H, CH2), 3.83 (br s, 1
H, CHOH), 2.20–2.29 (m, 1 H, CHMe2), 1.94–2.03 (m, 1 H,
CHMe), 1.79–1.84 (m, 1 H, H-4a), 1.62–1.71 (m, 1 H,
H-5a), 1.56 (d, J = 5.5, 1 H, OH), 1.17–1.29 (m, 2 H, H-5b,
H-6), 1.09 (d, J = 6.5 Hz, 3 H, CHMe), 0.95–1.02 (m, 1 H,
H-4b), 0.93 (d, J = 7.0 Hz, 3 H, Me of CHMe2), 0.87 (d, J =
7.0 Hz, 3 H, Me of CHMe2). 13C NMR (100 MHz, CDCl3):
Synlett 2009, No. 11, 1730–1732 © Thieme Stuttgart · New York