pubs.acs.org/joc
demand. An efficient synthesis should lead into a target
Efficient and Diverse Synthesis of Indole Derivatives
scaffold in a few synthetic steps, in good yields, and allowing
for extensive variation of the different starting materials to
broadly cover the respective chemical space. A stereoselec-
tive procedure should be possible as well. Multicomponent
reaction (MCR) chemistry is a technique that allows for
efficient and diverse access to multiple bioactive scaffolds.2
This technique recently led to multiple biological active
compounds currently undergoing clinical evaluation or even
being marketed.3 As part of our ongoing program to identify
new and efficient access to scaffolds of biological interest, we
herein report a new and versatile MCR synthesis of tetra-
hydro-β-carboline (Figure 1).4
€
Haixia Liu and Alexander Domling*
Departments of Pharmaceutical Sciences and Chemistry,
University of Pittsburgh, Pittsburgh, Pennsylvania 15261
Received May 11, 2009
FIGURE 1. New synthetic access to the tetrahydro-β-carboline
scaffold.
Tetrahydro-β-carboline ring systems are usually formed
from tryptophan or its derivative tryptamine and an alde-
hyde via the classical Pictet-Spengler condensation.5 The
reaction products then serve for further derivatizations in
sequential multistep processes.6 A combination of MCR and
Pictet-Spengler reaction has been described in the past,
however, leading to different types of scaffolds.2a,7 We
figured that our herein described MCR process might be
suitable to rapidly assemble tetrahydro-β-carboline scaffolds
and would thus be complementary to previously reported
methods. Toward this end, we synthesized tryptophan and
tryptamine derived isocyanides and reacted them in the Ugi
4-CR with aldehydes, primary amines, and carboxylic acids.
As a bifunctional amine component we used aminoacetalde-
hyde dimethylacetal, which in a subsequent step would
undergo the Pictet-Spengler reaction to afford highly sub-
stituted tetrahydro-β-carbolines. Such a two-step process
could have advantages over currently sequential processes,
A convergent 2-step procedure toward an array of indole
derivatives involving an Ugi reaction and a Pictet-Spengler
reaction is described. The reactions are versatile regarding
different starting materials. Hexacyclic 24 can be produced
with unprecedented complexity.
Indole alkaloids are the main group of bioactive alkaloids,
including, for example, hypertensive reserpine, antiprolifera-
tive vinblastine, or antiprotocoal apicidin.1 The basic skele-
ton of indole alkaloids, however, is often only accessible via
lengthy sequential synthesis. To optimize the properties of
natural products or to efficiently discover novel unrelated
biological activities, flexible synthetic approaches are in high
(1) Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278–311.
€
(2) (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3220.
(b) Multicomponentreaction; Zhu, J., Bienayme, H., Eds.; Wiley-VCH:
Weinheim, Germany, 2005. (c) Sunderhaus, J. D.; Martin, S. F. Chem.;Eur. J.
€
(4) (a) Beck, B.; Magnin-Lachaux, M.; Herdtweck, E.; Domling, A. Org.
€
Lett. 2001, 3, 2875–2878. (b) Beck, B.; Picard, A.; Herdtweck, E.; Domling,
A. Org. Lett. 2004, 6, 39–42. (c) Kolb, J.; Beck, B.; Almstetter, M.; Heck, S.;
€
2009, 15, 1300–1308. (d) Domling, A. Chem. Rev. 2006, 106, 17–89.
€
Herdtweck, E.; Domling, A. Mol. Diversity 2003, 6, 297–313. (d) Yehia, N.;
(3) (a) Boss, C.; Brisbare-Roch, C.; Jenck, F. J. Med. Chem. 2009, 52,
891–903. (b) Sisko, J.; Mellinger, M. Pure Appl. Chem. 2002, 74, 1349–1357.
(c) Liddle, J.; Allen, M. J.; Borthwick, A. D.; Brooks, D. P.; Davies, D. E.;
Edwards, R. M.; Exall, A. M.; Hamlett, C.; Irving, W. R.; Mason, A. M.;
McCafferty, G. P.; Nerozzi, F.; Peace, S.; Philp, J.; Pollard, D.; Pullen, M. A.;
Shabbir, S. S.; Sollis, S. L.; Westfall, T. D.; Woollard, P. M.; Wuc, C.;
Hickey, D. M. B. Bioorg. Med. Chem. Lett. 2008, 18, 90–94. (d) Bogen, S. L.;
Ruan, S.; Liu, R.; Agrawal, S.; Pichardo, J.; Prongay, A.; Baroudy, B.;
Saksena, A. K.; Girijavallabhan, V.; Njoroge, F. G. Bioorg. Med. Chem.
Lett. 2006, 16, 1621–1627. (e) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks,
D. J.; Carver, T. E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.;
Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.;
Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.;
Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney,
A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. J. Med. Chem. 2005, 48,
909–912. (f) Lamberth, C.; Jeanguenat, A.; Cederbaum, F.; De Mesmaeker,
A.; Zeller, M.; Kempf, H.-J.; Zeun, R. Bioorg. Med. Chem. 2008, 16, 1531–
1545.
ꢀ
Antuch, W.; Beck, B.; Hess, S.; Schauer-Vukasinovic, V.; Almstetter, M.;
Furer, P.; Herdtweck, E.; Domling, A. Bioorg. Med. Chem. Lett. 2004, 14,
ꢁ
€
€
3121–3125. (e) Domling, A.; Beck, B.; Eichelberger, U.; Sakamuri, S.;
Menon, S.; Lu, Y.; Chi, Q.-Z.; Wessjohann, L. Angew. Chem., Int. Ed.
€
2006, 43, 7235–7239. (f) Beck, B.; Srivastava, S.; Domling, A. Heterocycles
2007, 73, 177–182. (g) Haney, C. M.; Schneider, C.; Beck, B.; Brodsky, J.;
€
Domling A. Bioorg. Med. Chem. Lett. 2009, 19, 3828-3831. (h) Wang, W.;
€
Domling, A. J. Comb. Chem. 2009, 11, 403–409. (i) Srivastava, S.; Beck, B.;
€
Herdtweck, E.; Domling, A. Heterocycles 2009, 77, 731–738. (j) Srivastava, S.;
€
Beck, B.; Wang, W.; Czarna, A.; Holak, T. A.; Domling, A. J. Comb. Chem.
2009, 11, 631-639.
(5) (a) Pictet, A.; Spengler, T. Ber. 1911, 44, 2030–2036. (b) Whaley, G. In
Organic Reactions; Wiley: New York, 1951; Vol. 6, pp 151-190.
€
€
(6) Noren-Muller, A.; Wilk, W.; Saxena, K.; Schwalbe, H.; Kaiser, M.;
Waldmann, W. Angew. Chem., Int. Ed. 2008, 47, 5973–5977.
(7) (a) Sapi, J.; Laronze, J.-Y. ARKIVOC 2004, 208–222. (b) El Kaim, L.;
Gageat, M.; Gaultier, L.; Grimaud, L. Synlett 2007, 500–502.
DOI: 10.1021/jo900986z
r
Published on Web 08/07/2009
J. Org. Chem. 2009, 74, 6895–6898 6895
2009 American Chemical Society