Baidya et al.
CHART 1. Cinchona Alkaloids and Related Compounds
JOCArticle
and derivatives thereof (Chart 1) have remained in the focus
of interest.2-15
Nucleophilic attack of quinine at the carbonyl groups of
the intermediate ketenes has been suggested to rationalize
the asymmetric halogenations of carboxylic acid derivatives2
and of the enantioselective syntheses of β-lactams3 and
β-lactones4 via [2 þ 2] cycloadditions of ketenes.5 Asym-
metric syntheses of 1,4-benzoxazinones have been achieved
via [4 þ 2] cycloaddition of benzoquinone imides with chiral
ketene enolates derived from acid chlorides and catalytic
amounts of cinchona alkaloids.6 Cinchona alkaloids were
reported to catalyze asymmetric cyanations and cyanosilyla-
tions of ketones and aldehydes7 as well as desymmetrizations
of meso-anhydrides.8 Chiral ammonium enolates, obtained
by nucleophilic attack of cinchona alkaloids and their deri-
vatives at Michael acceptors, were involved in enantioselec-
tive Baylis-Hillman reactions.9 Conjugate additions of
cinchona alkaloids to Baylis-Hillman carbonates10 and
allylic trichloroacetimidates11 were suggested to account
for the enantioselective synthesis of R-substituted methyl
acrylates and trichloroacetylated allyl amides, respectively.
Nucleophilic attack of cinchona alkaloids at R-haloketones
or esters in the presence of carbonates generates chiral
ammonium ylides, which were used for asymmetric cyclo-
propanation reactions.12 Sharpless et al. employed cinchona
alkaloids for osmium-catalyzed asymmetric dihydroxyla-
tions of alkenes and reported that the binding strengths to
OsO4 are very sensitive to steric effects.13
the quinoline ring,14,15 it is generally assumed that the
catalytic activity of the cinchona alkaloids is due to the
nucleophilicity of the Nsp3 center of the quinuclidine ring.
During our efforts to characterize the nucleophilic reactivity
of cinchona alkaloids in comparison with other organocata-
lysts, we had noticed that in contrast to most other electro-
philes, benzhydrylium ions (diarylcarbenium ions) attack
selectively at the Nsp2 center of the quinoline ring. This
observation prompted us to systematically investigate the
nucleophilic reactivity of the two basic positions in cinchona
alkaloids.
Though Adamczyk and Rege reported that 1,3-propane
sultone reacts with quinine selectively at the Nsp2 center of
(7) (a) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195–6196.
(b) Tian, S. K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900–9901.
(c) Lundgren, S.; Wingstrand, E.; Penhoat, M.; Moberg, C. J. Am. Chem.
Soc. 2005, 127, 11592–11593.
Results
Product Identification. In agreement with earlier reports,16,17
compounds 1a-d react with benzyl bromide at the quinucli-
dine ring (Scheme 1). The quaternary ammonium salts
resulting from benzylation of 1a and 1d are commercially
available and are used as phase-transfer catalysts.
(8) (a) Duhamel, L.; Herman, T. Tetrahedron Lett. 1985, 26, 3099–3102.
(b) Hiratake, J.; Yamamoto, Y.; Oda, J. J. Chem. Soc., Chem. Commun.
1985, 1717–1719. (c) Aitken, R. A.; Gopal, J.; Hirst, J. A. J. Chem. Soc.,
Chem. Commun. 1988, 632–634. (d) Bolm, C.; Schiffers, I.; Atodiresei, I.;
Hackenberger, C. P. R. Tetrahedron: Asymmetry 2003, 14, 3455–3467.
(e) Bolm, C.; Schiffers, I.; Dinter, C. L.; Gerlach, A. J. Org. Chem. 2000,
65, 6984–6991. (f) Bolm, C.; Gerlach, A.; Dinter, C. L. Synlett 1999, 195–196.
(g) Mizuta, S.; Sadamori, M.; Fujimoto, T.; Yamamoto, I. Angew. Chem.,
Int. Ed. 2003, 42, 3383–3385. (h) Shibata, N.; Matsunaga, M.; Nakagawa,
M.; Fukuzumi, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. 2005, 127,
1374–1375. (i) Chen, Y.; Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2000, 122,
9542–9543. (j) Hiratake, J.; Inagaki, M.; Yamamoto, Y.; Oda, J. J. Chem.
Soc., Perkin. Trans. 1 1987, 1053–1058.
(9) (a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S.
J. Am. Chem. Soc. 1999, 121, 10219–10220. (b) Kawahara, S.; Nakano, A.;
Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103–3105.
(c) Dalaigh, C. O. Synlett 2005, 875–876. (d) Drewes, S. E.; Roos, G. H. P.
Tetrahedron 1988, 44, 4653–4670. (e) Basavaiah, D.; Rao, A. J.; Satyanar-
ayana, T. Chem. Rev. 2003, 103, 811–891. (f) Masson, G.; Housseman, C.;
Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614–4628.
(10) Steenis, D. J. V. C. V.; Marcelli, T.; Lutz, M.; Spek, A. L.;
Maarseveen, J. H. V.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281–286.
(11) Kobbelgaard, S.; Brandes, S.; Lutz, M.; Jorgensen, K. A. Chem.-
Eur. J. 2008, 14, 1464–1471.
(12) (a) Papageorgious, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2003, 42, 828–831. (b) Papageorgious, C. D.; Dios, M. A. C. D.; Ley,
S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641–4644.
(c) Johansson, C. C. C.; Bremeyer, N.; Ley, S. V.; Owen, D. R.; Smith,
S. C.; Gaunt, M. J. Angew. Chem., Int. Ed. 2006, 45, 6024–6028.
(13) (a) Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc.
1994, 116, 1278–1291. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless,
K. B. Chem. Rev. 1994, 94, 2483–2547.
In contrast, benzhydrylium ions attack cinchona alkaloids
1
at the quinoline nitrogen. Comparison of the H and 13C
NMR chemical shifts of the adducts of quinuclidine (1e),
6-methoxyquinoline (1h), and O-acetylquinine (1c) with
(mfa)2CHþ and (ani)2CHþ (Chart 2) reveals exclusive attack
of benzhydrylium ions at the Nsp2 center of cinchona alkaloids.
(16) (a) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013–3028.
(b) Maruoka, K.; Ooi, T. Angew. Chem., Int. Ed. 2007, 46, 4222–4266.
(c) Maruoka, K. Asymmetric Phase Transfer Catalysis; Wiley-VCH: Weinheim,
2008. (d) Santoro, S.; Poulsen, T. B.; Jorgensen, K. A. Chem. Commun. 2007,
5155–5157. (e) Dalko, P. I. Enantioselective Organocatalysis; Wiley-VCH:
Weinheim, 2007. (f) Berkessel, A.; Groger, H. Asymmetric Organocatalysis;
Wiley-VCH: Weinheim, 2005. (g) Elsner, P.; Bernardi, L.; Salla, G. D.; Overgaard,
J.; Jørgensen, K. A. J. Am. Chem. Soc. 2008, 130, 4897–4905.
(17) For syntheses of other ammonium salts: (a) Tozawa, T.; Nagao, H.;
Yamane, Y.; Mukaiyama, T. Chem. Asian J. 2007, 2, 123–134. (b) Matsushita,
M.; Yoshida, K.; Yamamoto, N.; Wirsching, P.; Lerner, R. A.; Janda, K. D.
Angew. Chem., Int. Ed. 2003, 42, 5984–5987. (c) Masui, M.; Ando, A.; Shioiri,
T. Tetrahedron Lett. 1988, 29, 2835–2836. (d) Hahn, U.; Kaufmann, A.;
€
€
Nieger, M.; Julinek, O.; Urbanova, M.; Vogtle, F. Eur. J. Org. Chem. 2006,
1237–1244. (e) Perrin, C. L.; Zhao, C. Org. Biomol. Chem. 2008, 6, 3349–
3353. (f) Robiette, R.; Conza, M.; Aggarwal, V. K. Org. Biomol. Chem. 2006,
4, 621–623. (g) Lall, S.; Behaj, V.; Mancheno, D.; Casiano, R.; Thomas, M.;
Rikin, A.; Gaillard, J.; Raju, R.; Scumpia, A.; Castro, S.; Engel, R.; Cohen,
J. I. Synthesis 2002, 1530–1540.
(14) Adamczyk, M.; Rege, S. Tetrahedron Lett. 1998, 39, 9587–9588.
(15) For the methylation of both nitrogens of cinchona alkaloids, see:
(a) Makarevich, I. F.; Gubin, Y. I. Chem. Nat. Compd. 2006, 42, 473–476.
(b) Yadav, A. K.; Singh, A. Synlett 2000, 1199–1201. (c) Takashima, H.;
Araki, A.; Takemoto, K.; Yoshikawa, N.; Tsukahara, K. J. Biol. Inorg.
Chem. 2006, 11, 316–324.
(18) Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.; Riedle,
E.; Mayr, H. Angew. Chem., Int. Ed. 2007, 46, 6176–6179.
7158 J. Org. Chem. Vol. 74, No. 18, 2009