C O M M U N I C A T I O N S
led to an almost quantitative yield of the desired product is
especially noteworthy (run 8). Doubly allylated ether 1j underwent
successive couplings in one pot in the presence of 2 equiv of 2b in
good overall isolated yield (run 9). While most reactions of
functionalized allylic ethers occurred at room temperature in the
presence of ∼2 mol % catalyst, catalyst loadings down to 1 mol %
were effective with gentle heating to 40 °C (run 7). Although
conjugated networks such as 1a predominantly gave the linear
coupling product, aliphatic ethers (e.g., 1k, 1l) selectively afforded
branched products, reflecting the favored rate of reductive elimina-
tion from a more hindered Pd(II) intermediate (runs 10 and 11).6
For an allylic substrate containing both acetate and ether moieties
(e.g., 4 in Scheme 3), reaction occurs first at the acetate and
subsequently at the less reactive ether residue. Xantphos15 was
found to be the preferred ligand, leading to an initial chemoselective
coupling product 1f. Second-stage allylic alkylation completes a
one-pot amination/Suzuki-Miyaura sequence to give the corre-
sponding aminated methallylbenzene derivative 3l in 76% isolated
yield (Scheme 3).
typically inert allylic ethers as reaction partners are currently under
investigation.
Acknowledgment. We thank Zymes, LLC for financial support
and Johnson Matthey for providing the catalysts PdCl2(DPEphos)
(Pd-117) and PdCl2(Dt-BPF) (Pd-118) used in this study.
Supporting Information Available: Experimental procedures and
characterization of all new compounds. This material is available free
References
(1) (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555. (b) Martin, R.; Buchwald,
S. L. Acc. Chem. Res. 2008, 41, 1461. (c) Kotha, S.; Lahiri, K.; Kashinath,
D. Tetrahedron 2002, 58, 9633. (d) Miyaura, N.; Suzuki, A. Chem. ReV.
1995, 95, 2457.
(2) Allylic acetate: (a) Mino, T.; Kajiwara, K.; Shirae, Y.; Sakamoto, M.; Fujita,
ˇ
T. Synlett 2008, 2711. (b) Pola´cˇkova´, V.; Toma, S; Kappe, C. O.
Tetrahedron 2007, 63, 8742. (c) Kabalka, G. W.; Al-Masum, M. Org. Lett.
2006, 8, 11. (d) Na´jera, C.; Gil-Molto´, J.; Karlstro¨m, S. AdV. Synth. Catal
2004, 346, 1798. (e) Bouyssi, D.; Gerusz, V.; Balme, G. Eur. J. Org. Chem.
2002, 2445. (f) Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin
Trans. 1 2000, 15. (g) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem.
1999, 64, 3384. (h) Kobayashi, Y.; Mizojiri, R.; Ikeda, E. J. Org. Chem.
1996, 61, 5391. (i) Legros, J.-Y.; Fiaud, J.-C. Tetrahedron Lett. 1990, 31,
7453. (j) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem.
Soc. 1985, 107, 972.
Scheme 3. One-Pot Amination/Suzuki-Miyaura Coupling
(3) Allylic halide: (a) Alacid, E.; Na´jera, C. J. Organomet. Chem. 2009, 694,
1658. (b) Kabalka, G. W.; Dadush, E.; Al-Masum, M. Tetrahedron Lett.
2006, 47, 7459. (c) Botella, L.; Na´jera, C. J. Organomet. Chem. 2002,
663, 46. (d) Moreno-Manas, M.; Pajuelo, F.; Pleixats, R. J. Org. Chem.
1995, 60, 2396. Allylic alcohol: (e) Tsukamoto, H.; Uchiyama, T.; Suzuki,
T.; Kondo, Y. Chem. Commun. 2008, 3005. (f) Liang, H.; Ito, S.; Yoshifuji,
M. Org. Lett. 2004, 6, 425. (g) Kayaki, Y.; Koda, T.; Ikariya, T. Eur. J.
Org. Chem. 2004, 4989. (h) Kabalka, G. W.; Dong, G.; Venkataiah, B.
Org. Lett. 2003, 5, 893. Allylic carbonates: (i) Chen, H.; Deng, M.-Z. J.
Organomet. Chem. 2000, 603, 189.
(4) (a) Garc´ıa-Iglesias, M.; Bun˜uel, E.; Ca´rdenas, D. J. Organometallics 2006,
25, 3611. (b) Solin, N.; Wallner, O. A.; Szabo´, K. J. Org. Lett. 2005, 7,
689. (c) Solin, N.; Kjellgren, J.; Szabo´, K. J. J. Am. Chem. Soc. 2004, 126,
7026.
Scheme 4. Proposed Mechanism
(5) Hegedus, L. S. In Organometallics in Synthesis: A Manual, 2nd ed.;
Schlosser, M., Hegedus, L. S., Lipshutz, B. H., Marshall, J. A., Nakamura,
E., Negishi, E., Reetz, M. T., Semmelhack, M. F.; Smith, K.; Yamamoto,
H., Eds.; Wiley: Chichester, U.K., 2004; p 1185.
(6) (a) Yamamoto, Y.; Takada, S.; Miyaura, N.; Iyama, T.; Tachikawa, H.
Organometallics 2009, 28, 152. (b) Yamamoto, Y.; Takada, S.; Miyaura,
N. Chem. Lett. 2006, 35, 1368.
(7) Ohmiya, H.; Makida, Y.; Tanaka, T.; Sawamura, M. J. Am. Chem. Soc.
2008, 130, 17276.
(8) (a) Zaitsev, A. B.; Gruber, S.; Pluss, P. A.; Pregosin, P. S.; Veiros, L. F.;
Worle, M. J. Am. Chem. Soc. 2008, 130, 1604. (b) Muzart, J. Eur. J. Org.
Chem. 2007, 3077. (c) Muzart, J. Tetrahedron 2005, 61, 4179.
(9) Recent reviews: (a) Herrer´ıas, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. ReV.
2007, 107, 2546. (b) Bergman, R. G. Nature 2007, 446, 391. (c) Godula,
K.; Sames, D. Science 2006, 312, 67. (d) Ishiyama, T.; Miyaura, N. Pure
Appl. Chem. 2006, 78, 1369. Recent allylic C-H aminations: (e) Reed,
S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316. (f) Liu, G.; Yin,
G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733.
(10) One reaction: Manabe, K.; Nakada, K.; Aoyama, N.; Kobayashi, S. AdV.
Synth. Catal. 2005, 347, 1499.
(11) Other reactions with allylic ethers: (a) Mora, G.; Piechaczyk, O.; Le Goff,
X. F.; Le Floch, P. Organometallics 2008, 27, 2565. (b) Yasui, H.; Mizutani,
K.; Yorimitsu, H.; Oshima, K. Tetrahedron 2006, 62, 1410. (c) Murakami,
H.; Minami, T.; Ozawa, F. J. Org. Chem. 2004, 69, 4482. (d) Terao, J.;
Watabe, H.; Watanabe, H.; Kambe, N. AdV. Synth. Catal. 2004, 346, 1674.
(e) Inoue, Y.; Taguchi, M.; Toyofuki, M.; Hashimoto, H. Bull. Chem. Soc.
Jpn. 1984, 57, 3021. (f) Onoue, H.; Moritani, I.; Murahashi, S. Tetrahedron
Lett. 1973, 14, 121. (g) Takahashi, K.; Miyake, A.; Hata, G. Bull. Chem.
Soc. Jpn. 1972, 45, 230.
(12) (a) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008,
47, 4866. (b) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am.
Chem. Soc. 2004, 126, 2706.
(13) (a) Lipshutz, B. H.; Abela, A. R. Org. Lett. 2008, 10, 5329. (b) Lipshutz,
B. H.; Ghorai, S. Aldrichimica Acta 2008, 41, 58. (c) Lipshutz, B. H.; Taft,
B. R. Org. Lett. 2008, 10, 1329. (d) PTS (polyoxyethanyl-R-tocopheryl
sebacate) was obtained from Sigma-Aldrich (cat. no. 698717).
(14) Switching to cinnamic methyl ether, however, gave less than 40% yield of
the corresponding coupling product under identical conditions after 48 h.
(15) Xantphos is 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.
Although the mechanism of this reaction is still under investiga-
tion, one plausible pathway is shown in Scheme 4. The reaction
starts with oxidative addition of palladium(0) to allylic ether 1 to
produce an allylpalladium intermediate (5, 5′, or 5′′) with the
bidentate ligand. After generation of a σ-allylpalladium species (5
or 5′), transmetalation with arylboronic acid 2 takes place to give
the σ-allylarylpalladium intermediate (6 or 6′). Linear product 3
or branched product 7 is then produced by reductive elimination
from 6′ or 6, respectively.
In conclusion, the first general Suzuki-Miyaura coupling of
boronic acids with allylic ethers has been described. Conditions
have been developed that are especially mild and do not rely on an
organic solvent as the reaction medium. Further applications of
transition-metal-catalyzed cross-coupling chemistry using such
JA905082C
9
J. AM. CHEM. SOC. VOL. 131, NO. 34, 2009 12105