M. Ogasawara, Y. Ge, A. Okada, T. Takahashi
FULL PAPER
(Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaum-
ann), Thieme, Stuttgart, 1995, vol. E21a, pp. 537–566; c) A.
Hoffmann-Röder, N. Krause, Angew. Chem. 2002, 114, 3057–
3059; Angew. Chem. Int. Ed. 2002, 41, 2933–2935; d) H. Ohno,
Y. Nagaoka, K. Tomioka in Modern Allene Chemistry (Eds.:
N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004, pp.
141–181; e) M. Ogasawara, Tetrahedron: Asymmetry 2009, 20,
259–271.
a) M. S. Shepard, E. M. Carreira, J. Am. Chem. Soc. 1997, 119,
2597–2605; b) H. Urabe, T. Takeda, D. Hideura, F. Sato, J.
Am. Chem. Soc. 1997, 119, 11295–11305; c) P. A. Wender, F.
Glorius, C. O. Husfeld, E. Langkopf, J. A. Love, J. Am. Chem.
Soc. 1999, 121, 5348–5349; d) H. Hu, D. Smith, R. E. Cramer,
M. A. Tius, J. Am. Chem. Soc. 1999, 121, 9895–9896; e) A.
Hoffmann-Röder, N. Krause, Org. Lett. 2001, 3, 2537–2538; f)
C. Schultz-Fademrecht, M. A. Tius, S. Grimme, B. Wibbeling,
D. Hoppe, Angew. Chem. 2002, 114, 1610–1612; Angew. Chem.
Int. Ed. 2002, 41, 1532–1535; g) K. M. Brummond, A. D.
Kerekes, H. Wan, J. Org. Chem. 2002, 67, 5156–5163; h) N.
Krause, C. Winter, Chem. Rev. 2011, 111, 1994–2009.
a) C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293–1316;
b) J. A. Marshall, Chem. Rev. 2000, 100, 3163–3186; c) J. A.
Marshall, J. Org. Chem. 2007, 72, 8153–8166.
CDCl3): δ = 0.79 (s, 9 H), 1.239 (t, J = 7.3 Hz, 3 H), 1.242 (t, J =
7.3 Hz, 3 H), 3.04 (s, 3 H), 3.25 (dd, J = 6.9, 16.1 Hz, 1 H), 3.34
(dd, J = 7.6, 16.1 Hz, 1 H), 3.41 (s, 1 H), 4.16–4.28 (m, 4 H), 5.17
(d, J = 11.4 Hz, 1 H), 5.25 (d, J = 18.3 Hz, 1 H), 5.42 (t, J =
7.1 Hz, 1 H), 6.53 (dd, J = 11.4, 18.3 Hz, 1 H), 7.24–7.33 (m, 3 H),
7.40–7.42 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 14.0
(unresolved diastereotopic -CO2CH2CH3), 26.8, 34.2, 35.7, 56.6,
61.7 (unresolved diastereotopic -CO2CH2CH3), 62.5, 89.7, 116.1,
126.1, 127.6, 128.2, 128.4, 134.0, 136.6, 137.5, 170.5 (unresolved
diastereotopic -CO2CH2CH3) ppm. HRMS (EI): calcd. for
C24H34O5 402.2406; found 402.2406. C24H34O5 (402.53): calcd. C
71.61, H 8.51; found C 71.54, H 8.59. [α]2D5 = –6.2 (c = 1.02, CHCl3
for a sample of 75%ee).
[4]
(S)-(E)-2-[3-(1-Methoxy-2,2-dimethylpropyl)penta-2,4-dienyl]-2-
phenylpropane-1,3-diol: 1H NMR (400 MHz, CDCl3): δ = 0.74 (s,
9 H), 2.52 (br., 2 H), 2.61 (dd, J = 7.4, 15.1 Hz, 1 H), 2.69 (dd, J
= 7.8, 15.1 Hz, 1 H), 3.00 (s, 3 H), 3.40 (s, 1 H), 3.91–3.94 (m, 2
H), 4.06–4.09 (m, 2 H), 5.14 (d, J = 11.4 Hz, 1 H), 5.22 (d, J =
17.4 Hz, 1 H), 5.25 (t, J = 7.8 Hz, 1 H), 6.56 (dd, J = 11.4, 17.4 Hz,
1 H), 7.19–7.23 (m, 1 H), 7.30–7.35 (m, 4 H) ppm. 13C NMR
(101 MHz, CDCl3): δ = 26.8, 32.0, 35.7, 47.9, 56.7, 68.2, 68.3, 89.5,
115.7, 126.7, 126.8, 127.1, 128.8, 134.3, 137.0, 141.2 ppm. HRMS
(FAB): calcd. for C20H30NaO3 [M + Na]+ 341.2093; found
341.2103.
[5]
[6]
[7]
[8]
G. Mentink, J. H. van Maarseveen, H. Hiemstra, Org. Lett.
2002, 4, 3497–3500.
M. Ogasawara, K. Ueyama, T. Nagano, Y. Mizuhata, T. Haya-
shi, Org. Lett. 2003, 5, 217–219.
a) S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 7320–
7321; b) S.-S. Ng, T. F. Jamison, Tetrahedron 2005, 61, 11405–
11417.
Supporting Information (see footnote on the first page of this arti-
1
cle): H NMR and 13C NMR spectra for all new compounds and
key known compounds.
[9]
a) M. Ogasawara, H. Ikeda, T. Hayashi, Angew. Chem. 2000,
112, 1084–1086; Angew. Chem. Int. Ed. 2000, 39, 1042–1044;
b) M. Ogasawara, H. Ikeda, T. Nagano, T. Hayashi, Org. Lett.
2001, 3, 2615–2617; c) M. Ogasawara, Y. Ge, K. Uetake, L.
Fan, T. Takahashi, J. Org. Chem. 2005, 70, 3871–3876; d) M.
Ogasawara, L. Fan, Y. Ge, T. Takahashi, Org. Lett. 2006, 8,
5409–5412; e) M. Ogasawara, A. Okada, S. Watanabe, L. Fan,
K. Uetake, K. Nakajima, T. Takahashi, Organometallics 2007,
26, 5025–5029; f) M. Ogasawara, A. Okada, K. Nakajima, T.
Takahashi, Org. Lett. 2009, 11, 177–180; g) M. Ogasawara, A.
Okada, H. Murakami, S. Watanabe, Y. Ge, T. Takahashi, Org.
Lett. 2009, 11, 4240–4243; h) M. Ogasawara, H. Murakami, T.
Furukawa, T. Takahashi, N. Shibata, Chem. Commun. 2009,
7366–7368; i) M. Ogasawara, H. Ikeda, T. Nagano, T. Hayashi,
J. Am. Chem. Soc. 2001, 123, 2089–2090; j) M. Ogasawara, T.
Nagano, T. Hayashi, J. Org. Chem. 2005, 70, 5764–5767; k) M.
Ogasawara, H. L. Ngo, T. Sakamoto, T. Takahashi, W. Lin,
Org. Lett. 2005, 7, 2881–2884; l) M. Ogasawara, A. Okada, V.
Subbarayan, S. Sörgel, T. Takahashi, Org. Lett. 2010, 12, 5736–
5739.
For the preparation of (allenylmethyl)silanes, see: a) M. Mon-
tury, B. Psaume, J. Goré, Tetrahedron Lett. 1980, 21, 163–166;
b) J. Pornet, N. Kolani, Tetrahedron Lett. 1981, 22, 3609–3610;
c) C. Nativi, A. Ricci, M. Taddei, Tetrahedron Lett. 1987, 28,
2751–2752; d) T. Harada, A. Osada, A. Oku, Tetrahedron Lett.
1995, 36, 723–724; e) X. Creary, Z. Jiang, M. Butchko, K.
McLean, Tetrahedron Lett. 1996, 37, 579–582; f) T. Harada, T.
Katsuhira, A. Osada, K. Iwazaki, K. Maejima, A. Oku, J. Am.
Chem. Soc. 1996, 118, 11377–11390; g) M. Lahrech, S. Hacini,
J.-L. Parrain, M. Santelli, Tetrahedron Lett. 1997, 38, 3395–
3398; h) Y. Maruyama, K. Yoshiuchi, F. Ozawa, J. Organomet.
Chem. 2000, 609, 130; i) R. Prabharasuth, D. L. Van Vranken,
J. Org. Chem. 2001, 66, 5256–5258.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research
on Priority Areas “Advanced Molecular Transformations of Car-
bon Resources” from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
[1] a) S. Patai (Ed.), The Chemistry of Ketenes, Allenes, and Related
Compounds, Wiley, Chichester, 1980; b) S. R. Landor (Ed.),
The Chemistry of the Allenes, Academic Press, London, 1982;
c) G. M. Coppola, H. F. Schuster, Allenes in Organic Synthesis,
Wiley, New York, 1984; d) N. Krause, A. S. K. Hashmi (Eds.),
Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004; e) N.
Krause (Ed.), Science of Synthesis: Houben-Weyl Methods of
Molecular Transformations Vol. 44: Cumulenes and Allenes,
Thieme, Stuttgart, 2008.
[2] a) J. A. Marshall, Chem. Rev. 1996, 96, 31–48; b) K. K. Wang,
Chem. Rev. 1996, 96, 207–222; c) Y. Yamamoto, U. Radhak-
rishnan, Chem. Soc. Rev. 1999, 28, 199–207; d) A. S. K.
Hashmi, Angew. Chem. 2000, 112, 3737–3740; Angew. Chem.
Int. Ed. 2000, 39, 3590–3593; e) R. Zimmer, C. U. Dinesh, E.
Nandanan, F. A. Khan, Chem. Rev. 2000, 100, 3067–3126; f)
X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535–544;
g) S. Ma, L. Li, Synlett 2001, 1206–1213; h) M. A. Tius, Acc.
Chem. Res. 2003, 36, 284–290; i) S. Ma, Acc. Chem. Res. 2003,
36, 701–712; j) L. K. Sydnes, Chem. Rev. 2003, 103, 1133–1150;
k) S. Ma, Eur. J. Org. Chem. 2004, 1175–1183; l) L. Brandsma,
N. A. Nedolya, Synthesis 2004, 735–745; m) S. Ma, Chem. Rev.
2005, 105, 2829–2872; n) K. M. Brummond, J. E. DeForrest,
Synthesis 2007, 795–818; o) M. A. Tius in Science of Synthesis:
Houben-Weyl Methods of Molecular Transformations Vol. 44:
Cumulenes and Allenes (Ed.: N. Krause), Thieme, Stuttgart,
2008, ch. 44.2.6, pp. 353–394; p) S. Yu, S. Ma, Chem. Commun.
2011, 47, 5384–5418.
[10]
[11]
a) B. Psaume, M. Montury, J. Goré, Synth. Commun. 1982, 12,
409–414; b) T. Imai, S. Nishida, J. Org. Chem. 1990, 55, 4849–
4852; c) S. Hatakeyama, K. Sugawara, M. Kawamura, S. Tak-
ano, Tetrahedron Lett. 1991, 32, 4509–4512; d) S. Hatakeyama,
K. Sugawara, S. Takano, Tetrahedron Lett. 1991, 32, 4513–
4516; e) S. Hatakeyama, K. Sugawara, S. Takano, J. Chem.
Soc., Chem. Commun. 1991, 1533–1534; f) S. Hatakeyama, M.
[3] For general reviews on the preparation of optically active all-
enes, see: a) R. Rossi, P. Diversi, Synthesis 1973, 25–36; b) C. J.
Elsevier in Houben-Weyl, Series Methods of Organic Chemistry
1662
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 1656–1663