10.1002/chem.201705745
Chemistry - A European Journal
COMMUNICATION
[9]
a) D. Shevchenko, M. F. Anderlund, S. Styring, H. Dau, I. Zaharieva, A.
Thapper, Phys. Chem. Chem. Phys. 2014, 16, 11965; b) H. Dau, I.
Zaharieva, Acc. Chem. Res. 2009, 42, 1861; c) M. Huynh, C. Shi,
Billinge, Simon J. L., D. G. Nocera, J. Am. Chem. Soc. 2015, 137,
14887; d) K. Rajiv, J. Rajni, Spectrochim. Acta Mol. Biomol. Spectrosc.
2011, 79, 1042; e) A. Bergmann, I. Zaharieva, H. Dau, P. Strasser,
Energy Environ. Sci. 2013, 6, 2745; f) M. M. Najafpour, A. N.
Moghaddam, H. Dau, I. Zaharieva, J. Am. Chem. Soc. 2014, 136, 7245;
g) F. Zhou, A. Izgorodin, R. K. Hocking, L. Spiccia, D. R. MacFarlane,
Adv. Energy Mater. 2012, 2, 1013; h) C. E. Frey, F. Kwok, D. Gonzáles-
Flores, J. Ohms, K. A. Cooley, H. Dau, I. Zaharieva, T. N. Walter, H.
Simchi, S. E. Mohney, P Kurz, Sustainable Energy Fuels 2017, 1, 1162;
i) M. Mahdi Najafpour, D. Jafarian Sedigh, S. Maedeh Hosseini, I.
Zaharieva, Inorg. Chem. 2016, 55, 8827.
Based on the aforementioned results, the exceptional OER
activity and remarkable stability of Mn3N2 can be dedicated to
the following aspects. Foremost, the distinct crystal structure of
Mn3N2 with two and five coordinatively unsaturated Mn undergo
rigorous corrosion at the surface of the particles evidencing
major structural rearrangement under strongly alkaline media of
electrochemical OER.[19] Further, this corrosion leads into an
active amorphous MnOx layer at the surface of Mn3N2 particles
by oxidizing Mn2+/Mn3+ to Mn3+/Mn4+. Such Mn3+ (in t2g3eg
1
configuration) assisted by Mn4+ are known to provide Jahn–
Teller distorted Mn–O bonds for binding O–O with appropriate
strength to felicitates OER and often documented as the real
active sites in the literature.[3–7] Moreover, the metallic character
of Mn3N2 also functions as a highly conductive layer between the
surface of the catalyst and electrode substrate providing faster
charge transfer capability by controlling the OER activity, which
is rather a notable drawback in the case of merely MnOx-based
systems.[31]
[10] a) K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C.
Wu, Y. Xie, J. Am. Chem. Soc. 2015, 137, 4119; b) M. Shalom, D.
Ressnig, X. Yang, G. Clavel, T. P. Fellinger, M. Antonietti, J. Mater.
Chem. A 2015, 3, 8171; c) Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen,
R. S. Rawat, H. J. Fan, Angew. Chem. Int. Ed. 2016, 55, 8670; d) F. Yu,
H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen, Z. Ren, ACS Catal.
2017, 7, 2052.
[11] a) R. Niewa, F.J. DiSalvo, D.-K. Yang, D.B. Zax, H. Luo, W.B. Yelon, J.
Alloys Compd. 1998, 266, 32; b) X. Song, Z. Sun, Q. Huang, M.
Rettenmayr, X. Liu, M. Seyring, G. Li, G. Rao, F. Yin, Adv. Mater. 2011,
23, 4690; c) J. B. Gosk, M. Drygaś, J. F. Janik, M. Palczewska, R. T.
Paine, A. Twardowski, J. Phys. D: Appl. Phys. 2006, 39, 3717.
[12] N. A. Gokcen, Bull. Alloy Phase Diagr. 1990, 11, 33.
[13] M. D. Lyutaya, A. B. Goncharuk, Soviet Powder Metall. Met. Ceram.
1977, 16, 208.
[14] a) A. D. Mah, J. Am. Chem. Soc. 1958, 80, 2954; b) W. J. Feng, N. K.
Sun, J. Du, Q. Zhang, X. G. Liu, Y. F. Deng, Z. D. Zhang, Solid State
Commun. 2008, 148, 199; c) J.-W. Huang, J. Li, H. Peng, Powder Metall.
2013, 50, 137.
[15] G. Kreiner, H. Jacobs, J. Alloys Compd. 1992, 183, 345.
[16] a) J. Choi, E. G. Gillan, Inorg. Chem. 2009, 48, 4470; b) S. I. U. Shah, A.
L. Hector, X. Li, J. R. Owen, J. Mater. Chem. A 2015, 3, 3612.
[17] T. S. Spicer, C. W. Spicer, A. N. Cloud, L. M. Davis, G. S. Girolami, J. R.
Abelson, J. Vac. Sci. Technol. 2013, 31, 30604.
Acknowledgements
The authors gratefully acknowledge the financial support by the
Bundesministerium für Bildung und Forschung (BMBF cluster
project MANGAN). The authors are also indebted to Mr.
Christoph Fahrensohn for SEM measurements and Mr. Sören
Selve for TEM measurements.
[18] M. Drygaś, M. M. Bućko, M. Musiał, J. F. Janik, J. Mater. Sci. 2016, 51,
8177.
[19] H. Jacobs, C. Stüve, J. Less Common Metals 1984, 96, 323.
[20] A. A. Audi, P. M. A. Sherwood, Surf. Interface Anal. 2002, 33, 274.
[21] M. Oku, K. Hirokawa, S. Ikeda, J. Electron. Spectrosc. Relat. Phenom.
1975, 7, 465.
Keywords: metal nitrides • conductive materials • corrosion •
energy storage • overpotentials •
[22] U. Maitra, B. S. Naidu, A. Govindaraj, C. N. R. Rao, Proc. Natl. Acad.
Sci. U.S.A. 2013, 110, 11704.
[23] I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer,
H. Dau, Energy Environ. Sci. 2012, 5, 7081.
[24] M. M. Najafpour, F. Rahimi, M. Fathollahzadeh, B. Haghighi, M.
Holynska, T. Tomo, S. I. Allakhverdiev, Dalton Trans. 2014, 43, 10866.
[25] M. Kölbach, S. Fiechter, R. van de Krol, P. Bogdanoff, Catal. Today
2017, 290, 2.
References
[1]
[2]
H. B. Gray, Nat. Chem. 2009, 1, 7.
P. W. Menezes, A. Indra, A. Bergmann, P. Chernev, C. Walter, H. Dau,
P. Strasser, M. Driess, J. Mater. Chem. A 2016, 4, 10014.
A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M.
Schwarze, H. Dau, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 13206.
P. W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel, R.
Schomäcker, M. Driess, ChemSusChem 2014, 7, 2202.
P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser, M.
Driess, ChemSusChem 2015, 8, 164.
[3]
[4]
[5]
[6]
[7]
[8]
[26] M. M. Najafpour, S. Salimi, R. Safdari, Int. J. Hydrogen Energy 2017, 42,
255.
[27] X. Lu, C. Zhao, Nature Commun. 2015, 6, 6616.
[28] a) L. Trotochaud, J. K. Ranney, K. N. Williams, S. W. Boettcher, J. Am.
Chem. Soc. 2012, 134, 17253; b) M. B. Stevens, L. J. Enman, A. S.
Batchellor, M. R. Cosby, A. E. Vise, C. D. M. Trang, S. W. Boettcher,
Chem. Mater. 2017, 29, 120.
[29] M. M. Najafpour, B. Haghighi, M. Z. Ghobadi, D. J. Sedigh, Chem.
Commun. 2013, 49, 8824.
[30] V. M. Jiménez, A. Fernández, J. P. Espinós, A. R. González-Elipe, J.
Electron. Spectrosc. Relat. Phenom. 1995, 71, 61.
P. W. Menezes, A. Indra, P. Littlewood, C. Göbel, R. Schomäcker, M.
Driess, ChemPlusChem 2016, 81, 370.
A. Indra, P. W. Menezes, C. Das, D. Schmeißer, M. Driess, Chem.
Commun. 2017, 53, 8641.
a) D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D.
Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, J.
Am. Chem. Soc. 2013, 135, 3494; b) C. C. L. McCrory, S. Jung, J. C.
Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977; c) J. Masa,
W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W.
Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508; d) P. W. Menezes,
A. Indra, V. Gutkin, M. Driess, Chem. Commun. 2017, 53, 8018.
[31] a) R. N. de Guzman, A. Awaluddin, Y.-F. Shen, Z. R. Tian, S. L. Suib, S.
Ching, C.-L. O'Young, Chem. Mater. 1995, 7, 1286; b) R. Yu, X. Chong,
Y. Jiang, R. Zhou, W. Yuan, J. Feng, RSC Adv. 2015, 5, 1620.
This article is protected by copyright. All rights reserved.