A. Sharma et al. / Tetrahedron Letters 50 (2009) 4986–4988
4987
i
iii
(CH2)8OPMB
iv
HO(CH2)9OH
PMBO(CH2)8X
(CH2)8OPMB
OR
(R)-5 +
OH
2
3 X = CH2OH
ii
5
4 X = CHO
6 R = Ac
v
(S)-5 R =H
OH
O
vi
viii
O
HO
(CH2)4CH3
O
(CH2)4CH3
O
CHO
OTPS
10
OR
7
8 R = H
vii
9 R =TPS
OH
RO
ix
OHC
(CH2)4CH3
OTPS
11
iii
x
(CH2)4CH3
OTPS
12
(CH2)8OPMB
OR
CH3(CH2)4
vii
OTPS
13 R = H
14 R =TPS
TPSO
CH3(CH2)4
HO
xiii
xi
(CH2)7R
OTPS
(CH2)7CO2H
OH
CH3(CH2)4
OTPS
OH
1
15 R = CH2OH
16 R =CO2H
xii
Scheme 1. Reagents and conditions: (i) NaH/PMBCl/DMF/25 °C/12 h (71%); (ii) PCC/NaOAc/CH2Cl2/25 °C/3 h (92%); (iii) CH2@CHMgBr/THF/25 °C/3 h (79% for 5, 81% for 12);
(iv) vinyl acetate/Novozyme 435/diisopropyl ether/25 °C/26 h (50% conversion); (v) K2CO3/MeOH/25 °C/6 h (86%); (vi) CH3(CH2)4Li/THF/25 °C/4 h (87%); (vii) TPSCl/
imidazole/DMAP/CH2Cl2/25 °C/18 h (84% for 9, 80% for 14); (viii) 80% aqueous TFA/0 °C/3 h (81%); (ix) NaIO4/MeCN–H2O (6:4)/0 °C/2 h (90%); (x) (S)-5/CH2Cl2/Grubbs 2nd
generation catalyst/25 °C/18 h (78% based on 5); (xi) DDQ/CH2Cl2–H2O/25 °C/12 h (77%); (xii) PDC/DMF/25 °C/24 h (71%); (xiii) Bu4NF/THF/0 °C/12 h (89%).
OH
O
HO
OH
i,ii
(CH2)4CH3
iii
iv
(CH2)4CH3
(CH2)7CO2H
OH
CH3(CH2)4
10
OTPS
(3S,4S)-12
OTPS
17
(9S,12S,13S)-1
Scheme 2. Reagents and conditions: (i) TMSCl/EtOAc/ꢁ20 °C/20 min; MsCl/Et3N/ꢁ20 °C/30 min; 2 N aqueous HCl/25 °C/40 min (78%); (ii) NaH/THF/0–25 °C/3 h (89%); (iii)
Me3SI/BuLi/THF/ꢁ25 °C/1 h then 25 °C/6 h (84%); (iv) As in Scheme 1.
bromide furnished the allylic alcohol 12 (syn:anti 78:22). As envi-
sioned in our synthetic plan, the C-3 carbinol centre of 12 would
eventually provide the C-12 carbinol centre of the target compound.
Since, the stereochemistry at C-12 of 1 was inconsequential to its
adjuvant activity, the diastereomeric mixture of 12 was used as such
for the synthesis. A cross-metathesis reaction between (S)-5 and 12
(1.7 equiv) in the presence of Grubbs 2nd generation catalyst
proceeded smoothly to furnish the desired diol 13 in good yield.
However, the Grubbs 1st and Grubbs–Hoveyda 2nd generation cat-
alysts were ineffective for the transformation. The E-geometry of the
olefin 13 as ascertained from its 1H NMR spectrum was consistent
with the proposed model for the cross-metathesis reaction.11 Silyla-
tion of the carbinol function of 13 as above gave the trisilylated
compound 14. Oxidative removal of the PMB protection in 14 with
dichlorodicyanobenzoquinone (DDQ) furnished the alcohol 15. This
was oxidized with pyridinium dichromate (PDC) in DMF to furnish
the acid 16, which on desilylation afforded the title acid
(9S,12RS,13S)-1.12
For the synthesis of natural (9S,12S,13S)-1, the diol 10 was
monosilylated at its primary carbinol site with trimethylchlorosi-
lane (TMSCl), the adjacent hydroxyl function was mesylated with
methanesulphonyl chloride (MsCl) and was subsequently desily-
lated in one pot. The resultant hydroxymesyl compound was trea-
ted with NaH to furnish the epoxide (2S,3S)-17. This on a base (n-
BuLi)-mediated reaction Me3S+Iꢁ afforded (3S,4S)-12, which was
subsequently converted to the target compound in five steps and
27% yield (Scheme 2).
References and notes
1. Murphy, B. R.; Webster, R. G. Orthomyxoviruses. In Virology; Fields, B. N., Knipe,
D. M., Eds., 2nd ed.; Raven: New York, 1990; p 1091.
2. (a) Nagai, T.; Yamada, H. Immunopharmacol. Immunotoxicol. 1998, 20, 267–281;
(b) Nagai, T.; Yamada, H. Int. J. Immunopharmacol. 1994, 16, 605–613; (c) Nagai,
T.; Urata, M.; Yamada, H. Immunopharmacol. Immunotoxicol. 1996, 18, 193–208.
3. Nagai, T.; Kiyohara, H.; Munakata, K.; Shirahata, T.; Sunazuka, T.; Harigaya, Y.;
Yamada, H. Int. Immunopharm. 2002, 2, 1183–1193.
4. (a) Sunazuka, T.; Shirahata, T.; Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Nagai,
T.; Kiyohara, H.; Yamada, H.; Kuwajima, I.; Omura, S. Tetrahedron Lett. 2002, 43,
1265–1268; (b) Shirahata, T.; Sunazuka, T.; Yoshida, K.; Yamamoto, D.;
Harigaya, Y.; Nagai, T.; Kiyohara, H.; Yamada, H.; Kuwajima, I.; Omura, S.
Bioorg. Med. Chem. Lett. 2003, 13, 937–941; (c) Shirahata, T.; Sunazuka, T.;
Yoshida, K.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Nagai, T.; Kiyohara, H.;
Yamada, H.; Omura, S. Tetrahedron 2006, 62, 9483–9496.
5. (a) Vasudeva Naidu, S.; Kumar, P. Tetrahedron Lett. 2007, 48, 2279–2282; (b)
Vasudeva Naidu, S.; Gupta, P.; Kumar, P. Tetrahedron 2007, 63, 7624–7633; (c)
Sabitha, G.; Venkata Reddy, E.; Bhikshapathi, M.; Yadav, J. S. Tetrahedron Lett.
2007, 48, 313–315; (d) Prasad, K. R.; Swain, B. Tetrahedron: Asymmetry 2008, 19,
1134–1138.
6. (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem.,
Int. Ed. 2000, 39, 44–122; (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int.
Ed. 1998, 37, 388–401; (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
Wiley: New York, 1994.
7. (a) Salaskar, A.; Mayekar, N. V.; Sharma, A.; Chattopadhyay, A.; Nayak, S. K.;
Chattopadhyay, S. Synthesis 2005, 2777–2781; (b) Salaskar, A.; Sharma, A.;
Chattopadhyay, S. Tetrahedron: Asymmetry 2006, 17, 325–329; (c) Roy, S.;
Sharma, A.; Chattopadhyay, N.; Chattopadhyay, S. Tetrahedron Lett. 2006, 47,
7067–7069; (d) Roy, S.; Sharma, A.; Dhotare, B.; Vichare, P.; Chattopadhyay, A.;
Chattopadhyay, S. Synthesis 2007, 1082–1090; (e) Sharma, A.; Gamre, S.;
Chattopadhyay, S. Tetrahedron Lett. 2007, 48, 633–634; (f) Sharma, A.; Gamre,
S.; Chattopadhyay, S. Tetrahedron Lett. 2007, 48, 3705–3707; (g) Sharma, A.;
Gamre, S.; Roy, S.; Goswami, D.; Chattopadhyay, A.; Chattopadhyay, S.