4996
W. Zhong, R. D. Little / Tetrahedron Letters 50 (2009) 4994–4997
6. Little, R. D.; Bukhari, A.; Venegas, M. G. Tetrahedron Lett. 1979, 20, 305–308.
O
7. (a) Little, R. D. Chem. Rev. 1996, 96, 93–114; (b) Allan, A.; Carroll, G. L.; Little, R.
D. Eur. J. Org. Chem. 1998, 1, 1–12.
O
O
O
8. (a) Carroll, G. L.; Kim Allan, A.; Schwaebe, M. K.; Little, R. D. Org. Lett. 2000, 2,
2531–2534; (b) Maiti, A.; Gerken, J. B.; Masjedizadeh, M. R.; Mimieux, Y. S.;
Little, R. D. J. Org. Chem. 2004, 69, 8574–8582; (c) Billera, C. F.; Little, R. D. J. Am.
Chem. Soc. 1994, 116, 5487–5488.
1 - 3
O
O
O
O
H
H
O
9. (a) Bregant, T. M.; Groppe, J.; Little, R. D. J. Am. Chem. Soc. 1994, 116, 3535–
3636; (b) Spielmann, H. P.; Fagan, P. A.; Bregant, T. M.; Little, R. D.; Wemmer, D.
E. Nucleic Acids Res. 1995, 23, 1576–1583.
10. (a) Mikesell, P. J.; Little, R. D. Tetrahedron Lett. 2001, 42, 4095–4097; (b) Carroll,
G. L.; Harrison, R.; Gerken, J.; Little, R. D. Tetrahedron Lett. 2003, 44, 2109–2112.
11. (a) Little, R. D.; Carroll, G. L. Tetrahedron Lett. 1981, 22, 4389–4392; (b) Little, R.
D.; Carroll, G. L. J. Am. Chem. Soc. 1984, 105, 928–932.
14a, α-isomer
14b, β-isomer
4
7a,b
OTBDPS
Scheme 2. Reagents and conditions: (1) (a) O3, MeOH/DCM, À78 °C; (b) NaBH4,
MeOH/H2O, reflux; (2) TBDPSCl, TEA, DCM, (70–75% two steps); (3) PCC/Celite, DCM
(>98%); (4) DBN, pyr CH2Cl2, reflux (1:3 14a to 14b after 6 h), then combine
materials and recycle.
12. Brundret, K. M.; Dalziel, W.; Hesp, B.; Jarvis, J. A. J.; Neidle, S. J. Chem. Soc., Chem.
Commun. 1972, 1027–1028.
13. (a) Trost, B. M.; Nishimura, Y.; Yamamoto, K. J. Am. Chem. Soc. 1979, 101, 1328–
1330; (b) Corey, E. J.; Tius, M. A.; Das, J. J. Am. Chem. Soc 1980, 102, 1742–1744;
(c) McMurry, J. E.; Andrus, A.; Ksander, G. M.; Musser, J. H.; Johnson, M. A.
Tetrahedron 1981, 37, 319–327; (d) Ireland, R. E.; Godfrey, J. D.; Thaisrivongs, S.
J. Am. Chem. Soc. 1981, 103, 2446–2448; (e) Van Tamelen, E. E.; Zawacky, S. R.;
Russell, R. K.; Carlson, J. G. J. Am. Chem. Soc. 1983, 105, 142–143; (f) Bettolo, R.;
Tagliatesta, P.; Lupi, A.; Bravetti, D. Helv. Chim. Acta 1983, 66, 1922–1928; (g)
Ireland, R. E.; Dow, W. C.; Godfrey, J. D.; Thaisrivongs, S. J. Org. Chem. 1984, 49,
1001–1013; (h) Tanis, S. P.; Chuang, Y. H.; Head, D. B. Tetrahedron Lett. 1985, 26,
6147–6150; (i) Holton, R. A.; Kennedy, R. M.; Kim, H. B.; Krafft, M. E. J. Am.
Chem. Soc. 1987, 109, 1597–1600; (j) Lupi, A.; Patamia, M.; Marini Bettolo, R.
Helv. Chim. Acta 1988, 71, 872–875; (k) Rizzo, C. J.; Smith, A. B., III Tetrahedron
Lett. 1988, 29, 2793–2796; (l) Rizzo, C. J.; Smith, A. B., III J. Chem. Soc., Perkin
O
O
O
O
O
1 - 5
O
O
H
O
H
7
8
14a
OTBDPS
OH
Trans.
1 1991, 969–979; (m) Toyota, M.; Nishikawa, Y.; Fukumoto, K.
Scheme 3. Reagents and conditions: (1) NaBH4, MeOH (99%); (2) (a) NaH; CS2; MeI,
THF (91%); (3) (n-Bu)3SnH, AIBN, PhH (91%); (4) CSA, acetone (92%); (5) TBAF, THF
(89%).
Tetrahedron 1994, 50, 11153–11166; (n) Toyota, M.; Nishikawa, Y.;
Fukumoto, K. Tetrahedron Lett. 1994, 35, 6495–6498; (o) Tanaka, T.; Okuda,
O.; Murakami, K.; Yoshino, H.; Mikamiyama, H.; Kanda, A.; Kim, S.-W.; Iwata, C.
Chem. Pharm. Bull. 1995, 43, 1407–1411; (p) Bilodeau, F.; Dube, L.;
Deslongchamps, P. Tetrahedron 2003, 59, 2781–2791; (q) Justicia, J.; Oltra, J.
E.; Cuerva, J. M. J. Org. Chem. 2005, 70, 8265–8272.
radical initiated cleavage of the C–O bond.22 Subsequent conver-
sion of the bridgehead ketal to a carbonyl unit was readily achieved
using catalytic quantities of CSA in wet acetone. That it reacts in
preference to the ketal appended to the 3-carbon bridge is
undoubtedly a consequence of the strain release that accompanies
the conversion from sp3 to sp2 hybridization with the attendant re-
moval of the crowded vicinal quaternary centers. A routine fluo-
ride-induced removal of the silyl group led efficiently to the
desired structure 8. Verification that we had reached the conver-
gent point in our synthetic sequence was achieved by comparing
our spectral data with those reported in the literature13m,23
(Scheme 3).
In conclusion, the results reported herein clearly indicate that
the intramolecular diyl trapping reaction can indeed be used to
assemble the bicyclo [3.2.1] framework that is common to bioac-
tive natural products. The results substantiate the principle that
this framework will be produced when the internal carbon of the
diylophile is appended with a large alkyl group. Judicious selection
of this group allows functional group manipulation once the cyclo-
addition has been completed.
14. Parikh, J. P.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505–5507.
15. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651–1660.
16. (a) Little, R. D.; Carroll, G. L. J. Org. Chem. 1979, 44, 4720; (b) Schwaebe, M. K.;
Little, R. D. Electrochim. Acta 1997, 42, 2201–2203.
17. (a) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605–621; (b) Moeller, K.
D. Tetrahedron 2000, 56, 9527–9554.
18. The low concentration is used to assure that triplet dimerization is not
competitive with cycloaddition.
19. The ratio of bridged to linearly fused cycloadducts was determined by 1H NMR.
20. The desired epimer was identified by comparing our data with those of Toyota,
Nishkawa, and Fukuoto for structure 8. See Ref. 13m.
21. We suspect, but have not proven, that through additional experimentation a
substantially more effective epimerization could be identified. Since the total
synthesis was not our major objective, we opted not to explore the options.
22. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1, 1975, 1574–
1585. In the present instance: To a solution of NaH (8 mg, 0.2 mmol, 60% in
mineral oil) in THF (0.5 mL) at 0 °C was added alcohol (45 mg, 0.079 mmol) in
THF (0.5 mL) dropwise. The reaction mixture was allowed to warm to room
temperature and stirred for 2 h. Carbon disulfide (15
lL, 0.25 mmol) was added
and stirred for 30 min. MeI (15 L, 0.24 mmol) was added rapidly to the
l
resulting yellow solution and stirred for 30 min. The reaction mixture was
poured into H2O (1 mL), and extracted with DCM (3 Â 2 mL). The combined
extracts were dried over Na2SO4, filtered, and then concentrated to dryness in
vacuo. The residue was purified by column chromatography over silica gel
(pentane/ether, 3:1, v/v) to afford xanthate (47 mg, 0.072 mmol, 91%) as a
white foam. To a solution of xanthate (47 mg, 0.072 mmol) in dry benzene
(1 mL) that was bubbled with argon for 30 min were added tri-n-butyltin
hydride (31 lL, 0.12 mmol) and AIBN (2 mg, 0.012 mmol). The resulting
Acknowledgments
solution was refluxed for 2 h and one more portion of tri-n-butyltin hydride
and AIBN were added and refluxed for 2 more hours, and then cooled to room
temperature. The solution was concentrated to dryness in vacuo and quenched
with satd. NaHCO3 (2 mL), extracted with ether (3 Â 2 mL), dried over Na2SO4,
filtered, and then concentrated to dryness in vacuo. The residue was purified
by column chromatography over silica gel (pentane/ether, 3:1, v/v) to afford
the deoxygenated compound (36 mg, 0.065 mmol, 91%) as a colorless oil.
23. The spectral data for structure 8: 1H NMR (CDCl3, 400 MHz): d 4.00–3.83 (m,
4H), 3.65 (t, 1H, J = 6.4), 2.38–2.30 (m, 1H), 2.22–2.17 (m, 1H), 2.15 (s, 3H),
2.14–2.10 (m, 1H), 2.03–1.99 (m, 1H), 1.89–1.76 (m, 3H), 1.68–1.59 (m, 4H),
1.57–1.44 (m, 2H), 1.40–1.26 (m, 3H). 13C NMR (CDCl3, 100 MHz): d 212.9,
110.9, 64.6, 64.1, 62.7, 57.1, 43.2, 42.6, 40.4, 32.5, 31.8, 29.4, 26.5, 26.4, 26.1.
ESI-MS: found 291.1555, C15H24O4Na+ Calculated 291.1572. For structure 10,
1H NMR (CDCl3, 200 MHz): d 5.18 (d, 1H, J = 1.0), 4.81 (d, 1H, J = 1.4), 3.96–
3.70 (m, 8H), 3.46 (s, 2H, 2.57 (br, 1H), 2.11–2.03 (m, 2H), 1.84–1.75 (m, 2H),
1.40 (s, 3H). 13C NMR (CDCl3, 50 MHz): d 148.5, 109.9, 109.8, 109.2, 65.4, 65.0,
64.1, 33.3, 24.1, 23.8. For fulvene 11, 1H NMR (CDCl3, 200 MHz): d 6.85–6.80
(m, 1H), 6.58–6.53 (m, 1H), 6.47–6.43 (m, 1H), 6.22 (s, 1H), 6.17–6.13 (m,
1H), 5.24 (d, 1 H, J = 1.2), 4.86 (d, 1 H, J = 1.4), 4.02–3.77 (m, 8 H), 2.27–2.17
(m, 2 H), 2.09–1.99 (m, 2H), 1.48 (s, 3H). 13C NMR (CDCl3, 50 MHz): d 148.6,
145.4, 139.1, 134.7, 131.6, 126.3, 121.1, 110.7, 109.3, 64.6, 64.3, 37.8, 24.2.
For diazene 6, 1H NMR (CDCl3, 200 MHz): d 5.79 (s, 1H), 5.24 (d, 1H, J = 1.0),
The Supported Activity is sponsored by an educational donation
provided by Amgen. The authors are grateful for their support.
R.D.L. is grateful to the former students who set the stage for gen-
erating the guidelines referred to in the text, particularly Drs. Car-
roll, Dannecker-Doerig, Masjedizadeh, Moeller, and Ott.
References and notes
1. (a) Coulson, C. A. J. Chim. Phys. 1948, 45, 243–248; (b) Longuet-Higgins, H. C. J.
Chem. Phys. 1950, 18, 265–274.
2. Longuet-Higgins refers to Kekuké structures as ‘K-structures’. See Ref. 1b.
3. Dowd, P. J. Am. Chem. Soc. 1966, 88, 2587–2589.
4. Baseman, R. J.; Pratt, D. W.; Chow, M.; Dowd, P. J. Am. Chem. Soc. 1976, 98,
5726–5727.
5. (a) Berson, J. A.; Bushby, R. J.; McBride, J. M.; Tremelling, M. J. Am. Chem. Soc.
1971, 93, 1544–1546; See also: (b) Berson, J. A. Non-Kekulé Molecules as
Reactive Intermediates. In Reactive Intermediates; Moss, R. A., Platz, M. S., Jones,
M., Jr., Eds.; Wiley-Interscience: New York, 2004. Chapter 5, pp 165–203.