pubs.acs.org/joc
A3 and omuralide,4a-f sharing the unique fused γ-lactam-β-
Concise Formal Synthesis of (-)-Salinosporamide A
(Marizomib) Using a Regio- and Stereoselective
Epoxidation and Reductive Oxirane Ring-Opening
Strategy
lactone bicyclic core. The global structural complexity and
impressive biological profile of 1 have attracted intensive
efforts from the synthetic community. In fact, numerous
synthetic studies toward 1 have been reported,5a-o including
our own.5d Herein, we present a new strategy based upon a
regio- and stereoselective epoxide formation/reductive oxi-
rane ring-opening sequence, and demonstrate its synthetic
advantage in terms of providing expedient access to the
highly functionalized 2-pyrrolidinone 8, leading to an effi-
cient formal synthesis of 1 (Scheme 1).
Taotao Ling,* Barbara C. Potts, and Venkat R. Macherla
Nereus Pharmaceuticals, Inc., 10480 Wateridge Circle,
San Diego, California 92121
Received March 11, 2010
Recently, synthetic tactics directly targeting key inter-
mediates 19 (Corey’s intermediate5a) and 12 (Lam’s inter-
mediate5k) have been disclosed.5j-l The reported chemistry
includes N-methylnitrone 1,3-dipolar cycloaddition,5j nick-
el-catalyzed reductive aldol cyclization-lactonization,5k and
N-heterocyclic carbene-catalyzed intramolecular cycliza-
tion-lactonization,5l each featuring construction of C-2
and C-3 stereocenters guided by the C-4 stereocenter. How-
ever, the reported diastereoselective ratios (dr) of these
methods5j-l range from poor to moderate; thus, further
improvement is the focus of our current effort. Based upon
our previous total synthesis of 1,5d we envisioned using
Seebach’s self-regeneration of stereocenters (SRS) principle6
followed by a regio- and stereoselective epoxide formation/
reductive oxirane ring-opening sequence to sequentially con-
struct the required C-4, C-3, and C-2 stereocenters of ad-
vanced intermediate 8 or 17 (Scheme 1). If successful, the
desired C-2 and C-3 stereocenters would be constructed
simultaneously or in a stepwise manner with high diastereos-
electivity guided by the previously installed C-4 stereocenter
inherited from L-serine (and maintained under SRS principle).5d
Notably, the newly generated C-3 hydroxyl group would
be syn to the C-4 methyl ester group, which would facilitate
the required β-lactone formation. This new strategy would
provide expedient access to the fused γ-lactam-γ-lactone
bicyclic core (12) of 1. As shown in our retrosynthetic analysis
(Scheme 1), we recognized a fused oxazolidine pyrrolinone
bicyclic ring system such as 6 or 14 that could potentially serve
as a chiral template upon which a strategic epoxide function-
ality would be stereoselectively installed to generate R,β-epoxy
amide 7 or 16, followed by regio- and stereoselective reductive
Expedient access to a highly functionalized 2-pyrrolidi-
none (8), the γ-lactam core of 20S proteasome inhibitor
(-)-salinosporamide A (marizomib; NPI-0052; 1), using
a regio- and stereoselective epoxide formation/reductive
oxirane ring-opening strategy is presented. Notably, the
sequential construction of the C-4, C-3, and C-2 stereo-
centers of 1 in a completely stereocontrolled fashion is a
key feature of streamlining the synthesis of intermediate
12. A related strategy is also discussed.
Salinosporamide A (1; marizomib) is a highly potent and
selective 20S proteasome inhibitor that is currently in phase I
clinical trials for the treatment of cancer.1,2a-c First isolated
as a secondary metabolite of the marine actinomycete Sali-
nispora tropica by Fenical and co-workers in 2003,1 1 is
structurally related to the natural products cinnabaramide
(1) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.;
Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355–357.
(2) (a) Chauhan, D.; Catley, L.; Li, G.; Podar, K.; Hideshima, T.;
Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui, H.; Letai, A.; Ovaa, H.;
Berkers, C.; Nicholson, B.; Chao, T.-H.; Neuteboom, S. T. C.; Richardson,
P.; Palladino, M. A.; Anderson, K. C. Cancer Cell 2005, 8, 407–419. (b)
Fenical, W. H.; Jensen, P. R.; Palladino, M. A.; Lam, K. S.; Lloyd, G. K.;
Potts, B. C. Bioorg. Med. Chem. 2009, 17, 2175–2180. (c) Joazeiro, C. A. P.;
Anderson, K. C.; Hunter, T. Cancer Res. 2006, 66, 7840–7842.
(5) Total synthesis: (a) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am.
Chem. Soc. 2004, 126, 6230–6231. (b) Reddy, L. R.; Fournier, J.-F.; Reddy, B.
V. S.; Corey, E. J. Org. Lett. 2005, 7, 2699–2701. (c) Endo, A.; Danishefsky, S. J.
J. Am. Chem. Soc. 2005, 127, 8298–8299. (d) Ling, T.; Macherla, V. R.; Manam,
R. R.; McArthur, K. A.; Potts, B. C. M. Org. Lett. 2007, 9, 2289–2292. (e)
Takahashi, K.; Midori, M.; Kawano, K.; Ishihara, J.; Hatakeyama, S. Angew.
Chem., Int. Ed. 2008, 47, 6244–6246. (f) Fukuda, T.; Sugiyama, K.; Arima, S.;
Harigaya, Y.; Nagamitsu, T.; Omura, S. Org. Lett. 2008, 10, 4239–4242.
Racemic synthesis: (g) Mulholland, N. P.; Pattenden, G.; Walters, I. A. S.
Org. Biomol. Chem 2006, 4, 2845–2846. (h) Ma, G.; Nguyen, H.; Romo, D. Org.
Lett. 2007, 9, 2143–2146. (i) Mulholland, N. P.; Pattenden, G.; Walters, I. A. S.
Org. Biomol. Chem. 2008, 6, 2782–2789. Formal synthesis: (j) Caubert, V.;
Masse, J.; Retailleau, P.; Langlois, N. Tetrahedron Lett. 2007, 48, 381–384. (k)
Margalef, I. V.; Rupnicki, L.; Lam, H. W. Tetrahedron 2008, 64, 7896–7901. (l)
Struble, J. R.; Bode, J. W. Tetrahedron 2009, 65, 4957–4967. (m) Momose, T.;
Kaiya, Y.; Hasegawa, J.; Sato, T.; Chida, N. Synthesis 2009, 2983–2991. For
reviews see: (n) Potts, B. C.; Lam, K. S. Mar. Drugs 2010, 8, 835–880. (o)
Shibasaki, M.; Kanai, M.; Fukuda, N. Chem. Asian J. 2007, 2, 20–38.
(6) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl.
1996, 35, 2708–2748.
(3) Stadler, M.; Bitzer, J.; Mayer-Bartschmid, A.; Muller, H.; Benet-
Buchholz, J.; Gantner, F.; Tichy, H.-V.; Reinemer, P.; Bacon, K. B. J. Nat.
Prod. 2007, 70, 246–252.
(4) For lactacystin, see: (a) Omura, S.; Fujimoto, T.; Otoguro, K.;
Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Saski, Y. J. Antibiot. 1991, 44,
113–116. (b) Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya,
T.; Fujita, S.; Nakagawa, A. J. Antibiot. 1991, 44, 117–118. For reviews on
omuralide and lactacystin syntheses, see: (c) Corey, E. J.; Li,
W.-D. Z. Chem. Pharm. Bull. 1999, 47, 1–10. (d) Masse, C. E.; Morgan, A.
J.; Adams, J.; Panek, J. S. Eur. J. Org. Chem. 2000, 2513–2528. (e) Balskus,
E. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 6810–6812. (f) Shenvi,
R. A.; Corey, E. J. J. Am. Chem. Soc. 2009, 131, 5746–5747.
3882 J. Org. Chem. 2010, 75, 3882–3885
Published on Web 05/14/2010
DOI: 10.1021/jo100432g
r
2010 American Chemical Society