more hindered position. These data suggest electronic
features of the substrate strongly influence regioselectivity.
To further evaluate the scope of this process, catalytic aryl
C-H prenylation of heterocyclic aromatic carboxamides
1n-1p was attempted.10 In each case, the prenylated adducts
2n-2p are obtained in good isolated yields as single isomers.
The conversion of indole 3-carboxamide 1p to the 2-prenyl
derivative 2p is significant given the abundance of prenylated
indoles in Nature (Figure 2).11 R,ꢀ-Unsaturated carboxamides
Scheme 1. Iridium-Catalyzed C-H Prenylation of deuterio-2ma
a As described in Figure 1 footnotes.
oxidative addition followed by allene hydrometalation to
furnish an aryl-allyl iridium complex, which upon C-C
reductive elimination from the primary σ-allyliridium hap-
tomer delivers the product of prenylation with regeneration
of cationic iridium(I). Incomplete levels of deuterium
incorporation may arise Via ꢀ-hydride elimination from the
tertiary σ-allyliridium haptomer of the aryl-allyl iridium
intermediate (Scheme 1).
In summary, we report the first catalytic C-H activation
initiated C-C coupling of allenes, as demonstrated by the
direct C-H prenylation of aromatic, heteroaromatic, and R,ꢀ-
unsaturated carboxamides. Future studies will focus on the
development of related transformations that promote C-C
bond formation in the absence of premetalated reagents and,
consequently, in the absence of stoichiometric metallic
byproducts.
Figure 2. Iridium-catalyzed C-H prenylation of heterocyclic
aromatic carboxamides 1n-1p. As described in Figure 1 footnotes.
bTwo equivalents of 1,4-cyclooctadiene was added to suppress olefin
isomerization.
1q-1s also were examined.12 The desired adducts 2q-2s
were generated in good isolated yields as single isomers
(Figure 3).
Acknowledgment. The following agencies are acknowl-
edged for their support of our research: the Robert A. Welch
Foundation, the American Chemical Society Green Chem-
istry Institute Pharmaceutical Roundtable, and the NSF
(CHE-0749016).
Supporting Information Available: Spectral data for all
new compounds (1H NMR, 13C NMR, IR, HRMS). This
material is available free of charge via the Internet at
Figure 3. Iridium-catalyzed C-H prenylation of R,ꢀ-unsaturated
carboxamides 1q-1s. As described in Figure 1 footnotes.
OL901759T
(9) Stoichiometric ortho-cyclometallation of iridium centers onto m-
nitrobenzoate occurs at the para-position with respect to the nitro moiety:
(a) Kisenyi, J. M.; Sunley, G. J.; Cabeza, J. A.; Smith, A. J.; Adams, H.;
Salt, N. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1987, 2459. (b)
Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891.
(c) Han, S. B.; Kim, I.-S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009,
131, 6916, and ref 5c.
To corroborate the catalytic mechanism, deuterio-1m was
subjected to standard conditions for C-H prenylation. As
anticipated, deuterium was transferred to the vinylic position
of the adduct deuterio-2m (Scheme 1). This result is
consistent with a catalytic mechanism involving ortho-C-H
(10) See ref 2i and literature cited therein.
(11) For selected syntheses of prenylated indoles, see: (a) Takase, S.;
Kawai, Y.; Uchida, I.; Tanaka, H.; Aoki, H. Tetrahedron 1985, 41, 3037.
(b) Zhao, S.; Gan, T.; Yu, P.; Cook, J. M. Tetrahedron Lett. 1998, 39,
7009. (c) Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.;
Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964. (d) Caballero, E.;
Avendan˜o, C.; Mene´ndez, J. C. J. Org. Chem. 2003, 68, 6944. (e) Tan,
G. H.; Zhu, X.; Ganesan, A. Org. Lett. 2003, 5, 1801. (f) Kimura, M.;
Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592.
(g) Lo´pez-Alvarado, P.; Caballero, E.; Avendan˜o, C.; Mene´ndez, J. C. Org.
Lett. 2006, 8, 4303. (h) Xiong, X.; Pirrung, M. C. J. Org. Chem. 2007, 72,
5832.
(8) For iridium-catalyzed C-C bond formation via O-directed ortho-
C-H activation initiated p-bond insertion, see: (a) Lin, Y.; Ma, D.; Lu, X.
Tetrahedron Lett. 1987, 28, 3249. (b) Aufdenblatten, R.; Diezi, S.; Togni,
A. Monatsh. Chem. 2000, 131, 1345. (c) Nishinaka, Y.; Satoh, T.; Miura,
M.; Morisaka, H.; Nomura, M.; Matsui, H.; Yamaguchi, C. Bull. Chem.
Soc. Jpn. 2001, 74, 1727. (d) Dorta, R.; Togni, A. Chem. Commun. 2003,
760. (e) DeBoef, B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc. 2004,
126, 6556. (f) Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.-K.; Endo,
K.; Shibata, T. J. Organomet. Chem. 2008, 693, 3939. (g) Tsuchikama, K.;
Kasagawa, M.; Endo, K.; Shibata, T. Org. Lett. 2009, 11, 1821. (h) Join,
B.; Yamamoto, T.; Itami, K. Angew. Chem., Int. Ed. 2009, 48, 3644.
(12) Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem. Soc. 1995, 117,
5371.
4250
Org. Lett., Vol. 11, No. 18, 2009