Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
5
6
7
J. Teyssandier, S. De Feyter and K. S. Mali, Chem. Commun.,
Y. Tobe, K. Tahara and S. De Feyter, BuDll.OCI:h1e0m.10.3S9o/cC.9JCpCn0.,0250312C6,
89, 1277, and the references cited therein.
in a parallel fashion to create a linear structure different from
those of the single component systems. Hexagonal arrays could
be efficiently fabricated in the mixture of m1 and 2, despite the
linear molecular building blocks. Cooperative I···N halogen
bonding and Ar-F···H-Py interactions formed triangular helical
assemblies. In addition, the preorganization of the alkyl chains
in 2 assisted the orientation of those of m1 along the hexagonal
framework, resulting in the formation of fascinating
honeycomb structures. Effective fabrication of the honeycomb
structures was achieved by tuning the concentration of the
blend solution, and lower concentrations were found to
increase the area over which the hexagonal arrays were formed.
The present study provided a rational method to construct
hexagonal arrays composed of a bicomponent blend of two
linear molecular building blocks via intermolecular halogen
bonding. We believe that supramolecular complex formation
induced by the directional halogen bonding contributes to the
development of molecular assembly techniques, and should be
applicable to the efficient production of nano-architectures and
their regular arrangement on a surface.
(a) A. Vanderkooy and M. S. Taylor, J. Am. Chem. Soc., 2015,
137, 5080; (b) H. L. Nguyen, P. N. Horton, M. B. Hursthouse,
A. C. Legon and D. W. Bruce, J. Am. Chem. Soc., 2004, 126, 16;
(c) M. Kondo, K. Okuomoto, S. Miura, T. Nakanishi, J. Nishida,
T. Kawase and N. Kawatsuki, Chem. Lett., 2017, 46, 1179; (d)
F. Wang, N. Ma, Q. Chen, W. Wang and L. Wang, Langmuir,
2007, 23, 9540; (e) F. Silly, J. Phys. Chem. C, 2013, 117, 20244;
(f) A. Mukherjee, J. Teyssandier, G. Hennrich, S. De Feyter and
K. S. Mali, Chem. Sci., 2017, 8, 3759; (g) Z. Guo, P. Yu, K. Sun,
S. Lei, Y. Yi and Z. Li, Phys. Chem. Chem. Phys., 2017, 19, 31540;
(h) B. Zha, X. Miao, P. Liu, Y. Wu and W. Deng, Chem. Commun.,
2014, 50, 9003; (i) Y. Makoudi, M. Beyer, J. Jeannoutot, F.
Picaud, F. Palmino and F. Chérioux, Chem. Commun., 2014, 50,
5714; (j) D. Peyrot and F. Silly, ACS Nano, 2016, 10, 5490; (k)
Q.-N. Zheng, X.-H. Liu, T. Chen, H.-J. Yan, T. Cook, D. Wang, P.
J. Stang and L.-J. Wan, J. Am. Chem. Soc., 2015, 137, 6128.
(a) Gaussian 09, Revision C01, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J.
E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.
Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,
Gaussian, Inc., Wallingford CT, 2009; (b) Details of the
computational methods are provided in the ESI.
8
This work was partly supported by the JSPS KAKENHI
(17K05851). We thank Dr. Hiroaki Sato and Dr. Thierry Fouquet
for the HR-MALDI-MS analysis.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi,
G. Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478; (b)
R. Tepper and U. S. Schubert, Angew. Chem. Int. Ed., 2018, 57,
6004.
9
It was difficult to obtain clear STM images at concentrations
higher than 0.125 mM. In some cases, double columnar
structures possibly composed of p1 were found as separated
domains, in addition to the major 2D structure in Fig. 2, as
shown in Fig. S1 (ESI).
2
3
(a) S. Tsuzuki, A. Wakisaka, T. Ono and T. Sonoda, Chem. Eur.
J., 2012, 18, 951; (b) S. Tsuzuki, T. Uchimaru, A. Wakisaka, T.
Ono and T. Sonoda, Phys. Chem. Chem. Phys., 2013, 15, 6088.
(a) E. Persch, O. Dumele and F. Diederich, Angew. Chem. Int.
Ed., 2015, 54, 3290; (b) L. C. Gilday, S. W. Robinson, T. A.
Barendt, M. J. Langton, B. R. Mullaney and P. D. Beer, Chem.
Rev., 2015, 115, 7118.; (c) J. Poznański, M. Winiewska, H.
Czapinska, A. Poznańska and D. Shugar, Acta Biochim. Pol.,
2016, 63, 203; (d) B. Li, S.-Q. Zang, L.-Y. Wang and T. C. W. Mak,
Coord. Chem. Rev., 2016, 308, 1.;
(a) R. Gutzler, T. Sirtl, F. Dienstmaier, K. Mahata, W. M. Heckl,
M. Schmittel and M. Lackinger, J. Am. Chem. Soc., 2010, 132,
5084; (b) T. Chen, G.-B. Pan, H. Wettach, M. Fritzsche, S. Höger,
L.-J. Wan, H.-B. Yang, B. H. Northrop, and P. J. Stang, J. Am.
Chem. Soc., 2010, 132, 1328; (c) D. Bléger, D. Kreher, F.
Mathevet, A.-J. Attias, G. Schull, A. Huard, L. Douillard, C.
Fiorini-Debuischert and F. Charra, Angew. Chem. Int. Ed., 2007,
46, 7404; (d) R. Gutzler, S. Lappe, K. Mahata, M. Schmittel, W.
M. Heckl and M. Lackinger, Chem. Commun., 2009, 680; (e) S.
Wu, S. Xu, Y. Geng, Z. Liu, H. Nie, L. Shu, K. Deng, Q. Zeng and
C. Wang, J. Phys. Chem. C, 2016, 120, 12618.; (f) Z. Ma, Y.-Y.
Wang, P. Wang, W. Huang, Y.-B. Li, S.-B. Lei, Y.-L. Yang, X.-L.
Fan and C. Wang, ACS Nano, 2007, 1, 160; (g) M. O. Blunt, J. C.
Russell, M. del C. Gimenez-Lopez, N. Taleb, X. Lin, M. Schröder,
N. R. Champness and P. H. Beton, Nat. Chem., 2010, 3, 74; (h)
C.-A. Palma, M. Bonini, A. Llanes-Pallas, T. Breiner, M. Prato,
D. Bonifazi, and P. Samorì, Chem. Commun., 2008, 5289.
10 The compound 3 could form the self-assembled 2D structure,
as shown in Fig. S6 (ESI).
11 (a) N. Katsonis, H. Xu, R. M. Haak, T. Kudernac, Ž. Tomović, S.
George, M. Van der Auweraer, A. P. H. J. Schenning, E. W.
Meijer, B. L. Feringa and S. De Feyter, Angew. Chem. Int. Ed.,
2008, 47, 4997; (b) S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R.
Lazzaroni, Y. Tobe and S. De Feyter, Nano Lett., 2008, 8, 2541;
(c) J. A. A. W. Elemans, I. De Cat, H. Xu and S. De Feyter, Chem.
Soc. Rev., 2009, 38, 722; (d) T. Chen, W. H. Yang, D. Wang and
L. J. Wan, Nat. Commun., 2013, 4, 1389; (e) S. Yagai, M. Suzuki,
X. Lin, M. Gushiken, T. Noguchi, T. Karatsu, A. Kitamura, A.
Saeki, S. Seki, Y. Kikkawa, Y. Tani and K. I. Nakayama, Chem.
Eur. J., 2014, 20, 16128.
12 (a) S. Lei, K. Tahara, F. C. De Schryver, M. Van der Auweraer,
Y. Tobe and S. De Feyter, Angew. Chem. Int. Ed., 2008, 47,
2964; (b) N. Thi Ngoc Ha, T. G. Gopakumar and M. Hietschold,
J. Phys. Chem. C, 2011, 115, 21743; (c) A. Ciesielski, P. J.
Szabelski, W. Rżysko, A. Cadeddu, T. R. Cook, P. J. Stang and P.
Samorì, J. Am. Chem. Soc., 2013, 135, 6942; (d) S. Zhang, J.
Zhang, K. Deng, J. Xie, W. Duan and Q. Zeng, Phys. Chem. Chem.
Phys., 2015, 17, 24462; (e) L. Xu, X. Miao, L. Cui, P. Liu, K. Miao,
X. Chen and W. Deng, J. Phys. Chem. C, 2015, 119, 17920; (f)
V. Stepanenko, R. Kandanelli, S. Uemura, F. Würthner and G.
Fernández, Chem. Sci., 2015, 6, 5853. (g) F. Silly, J. Phys. Chem.
C, 2017, 121, 10413.
4
4 | Chem. Commun., 2018, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins