J.E. Spangler, E.J. Sorensen / Tetrahedron 65 (2009) 6739–6745
6745
three times with a balloon of carbon monoxide. 5 mL of CH3CN
(degassed 20 min with a balloon of carbon monoxide) was added
followed by dropwise addition of NEt3 (0.135 mL, 0.96 mmol,
2.0 equiv). The reaction was heated to 60 ꢁC for 90 min under
a balloon pressure of carbon monoxide and then cooled to room
temperature. Silica gel (2 g) was added and the solvent was re-
moved under reduced pressure. Purified by flash chromatography
(SiO2, 1:9/1:6/1:4 acetone/hexanes) to provide 86 mg (77%) of
10 as an off-white solid. TLC: Rf¼0.14 (SiO2, 1:3 EtOAc/hexanes); IR
(film) 1734, 1683, 1654, 1420, 1215, 1139 cmꢀ1; 1H NMR (500 MHz,
51.2, 50.2, 49.0, 43.7, 36.5, 21.8, 18.8, 17.0; HRMS (ESI-TOF) C15H18O4
m/z calcd for [MþH]þ: 263.1278; found: 263.1277. 23. TLC: Rf¼0.25
(SiO2, 1:3:6 MeOH/EtOAc/hexanes); IR (film) 3482, 1733,
1652 cmꢀ1 1H NMR (500 MHz, CDCl3)
; d 6.49 (s, 1H), 4.60 (d,
J¼10.3 Hz, 1H), 4.30 (d, J¼10.3 Hz, 1H), 3.89–3.78 (m, 1H), 2.20
(d, J¼14.5 Hz, 1H), 1.92 (d, J¼12.0 Hz, 1H), 1.54 (s, 3H), 1.42 (d,
J¼14.5 Hz, 1H), 1.37 (d, J¼12.1 Hz, 1H), 1.16–1.08 (m, 6H); 13C NMR
(125 MHz, CDCl3)
d 211.1, 166.0, 141.3, 137.3, 74.4, 71.6, 58.1, 48.5,
47.4, 43.8, 41.8, 40.3, 20.4, 17.0, 15.4; HRMS (ESI-TOF) C15H18O4 m/z
calcd for [MþH]þ: 263.1278; found: 263.1278.
CDCl3)
4.60 (d, J¼18.0 Hz, 1H), 3.61 (d, J¼18.9 Hz, 1H), 2.79 (d, J¼18.9 Hz,
1H), 1.97 (s, 3H), 1.26 (s, 3H); 13C NMR (125 MHz, CHCl3)
202.1,
d
9.51 (s, 1H), 7.12 (d, J¼1.4 Hz, 1H), 4.79 (d, J¼18.0 Hz, 1H),
5.1.10. Polycyclic diketone 25
d
Anhydrous NaHCO3 (16 mg, 0.19 mmol, 3.0 equiv) was added to
a solution of 24a and 24b (3:1 ratio) (16.6 mg, 0.063 mmol,
1.0 equiv) in CH2Cl2 (5.0 mL). Dess–Martin periodinane (67 mg,
0.16 mmol, 2.5 equiv) was added in a single portion and the re-
sultant heterogeneous mixture was stirred vigorously for 1 h. The
reaction was poured into a separatory funnel, diluted with CH2Cl2
(5 mL), and washed sequentially with saturated aqueous NaHCO3
(2 mL) and saturated aqueous Na2S2O3 (2 mL). The organic layer
was dried over anhydrous Na2SO4 and concentrated under reduced
pressure. The residue was purified by flash chromatography (SiO2,
1:3 EtOAc/hexanes) to give 14.9 mg (92%) of 25 as a clear oil. TLC:
Rf¼0.14 (SiO2, 1:3 EtOAc/hexanes); IR (film) 1766, 1747, 1726, 1662,
197.9, 170.6, 169.2, 135.4, 129.5, 121.5, 68.8, 52.4, 47.2, 25.9, 16.6;
HRMS (ESI-TOF) C12H12O4 m/z calcd for [MþCH3]þ: 235.0965;
found: 235.0962.
5.1.8. Allylic alcohol 22
A solution of aldehyde 10 (55 mg, 0.25 mmol, 1.0 equiv) in THF
(2.5 mL) was cooled to ꢀ78 ꢁC and isopropenylmagnesium bromide
(0.5 M in THF, 0.55 mL, 0.275 mmol, 1.1 equiv) was added dropwise.
The yellow solution was stirred for 1 h at this temperature and then
quenched with saturated aqueous NH4Cl (1 mL). The biphasic so-
lution was allowed to warm to room temperature and poured into
a separatory funnel diluted with diethyl ether (10 mL). The layers
were separated and the organic layer was dried over anhydrous
Na2SO4 and concentrated under reduced pressure to a yellow oil.
The residue was purified by flash chromatography (SiO2, 1:6 ace-
tone/hexanes) to provided 35.5 mg (55%) of 22 as a clear oil as
a 4.8:1 mixture of alcohol diastereoisomers. TLC: Rf¼0.43 (SiO2, 1:3
1453, 1352 cmꢀ1 1H NMR (500 MHz, CDCl3)
; d 7.10 (s, 1H), 4.53 (d,
J¼10.7 Hz, 1H), 4.45 (d, J¼10.7 Hz, 1H), 2.52 (d, J¼19.5 Hz, 1H), 2.14
(d, J¼19.5 Hz, 1H), 1.72 (d, J¼14.1 Hz, 1H), 1.44 (d, J¼14.1 Hz, 1H),
1.38 (s, 3H), 1.27 (s, 3H), 1.15 (s, 3H); 13C NMR (125 MHz, CHCl3)
d
213.4, 210.6, 165.1, 139.8, 132.0, 65.7, 56.2, 54.1, 50.1, 47.3, 45.5,
42.7, 17.2, 16.6, 15.9; HRMS (ESI-TOF) C15H16O4 m/z calcd for
[MþH]þ 261.1121; found 261.1128.
EtOAc/hexanes); IR (film) 3520, 1740, 1730, 1722 cmꢀ1
(500 MHz, CDCl3)
;
1H NMR
d
7.19 (s, 1.00H), 7.09 (s, 0.20H), 5.31 (d, J¼17.6 Hz,
1.01H), 5.04 (d, J¼17.7 Hz, 0.23H), 4.95 (d, J¼17.7 Hz, 0.20H), 4.91 (s,
2.35H), 4.82 (s, 1.26H), 3.85 (s, 1.25H), 2.60 (dd, J¼14.2, 10.1 Hz,
0.22H), 2.51 (d, J¼14.1 Hz, 1.00H), 2.01 (d, J¼4.2 Hz, 3.77H), 1.95 (d,
J¼17.1 Hz, 0.33H), 1.81 (dd, J¼14.2, 9.7 Hz, 1.00H), 1.71 (s, 3.88H),
Acknowledgements
We gratefully acknowledge NIGMS (GM065483), Princeton
University, the Merck Research Laboratories, and Boehringer-
Ingelheim, and a predoctoral fellowship from the National Science
Foundation (J.E.S.) for supporting this work.
1.39 (s, 0.71H), 1.37 (s, 3.00H); 13C NMR (125 MHz, CHCl3)
d 206.2,
203.4, 173.7, 171.1, 169.6, 169.3, 147.4, 146.8, 136.1, 134.6, 129.9, 127.6,
119.5, 115.7, 111.5, 110.9, 73.5, 73.2, 70.0, 69.4, 51.4, 50.2, 45.9, 44.4,
27.7, 26.4, 18.2, 17.7, 16.5, 16.1; HRMS (ESI-TOF) C15H18O4 m/z calcd
for [MþH]þ: 263.1278; found: 263.1276.
References and notes
1. Dunn, A. W.; Johnstone, R. W.; Sklarz, B. J. Chem. Soc., Chem. Commun. 1976, 270.
2. (a) Dunn, A. W.; Johnstone, R. A. W.; Sklarz, B.; Lessinger, L.; King, T. J. J. Chem.
Soc., Chem. Commun. 1978, 533–534; (b) Dunn, A. W.; Johnstone, R. W. J. Chem.
Soc., Perkin Trans. 1 1979, 2113–2117; (c) Simpson, T. J. J. Chem. Soc., Perkin Trans.
1 1979, 2118–2121.
3. For a review on the biosynthesis of the andibenin family of natural products
see: (a) Simpson, T. J. Chem. Soc. Rev. 1975, 4, 497–522; (b) Simpson, T. J.;
Ahmed, S. A.; McIntyre, R.; Scott, F. E.; Sadler, I. H. Tetrahedron 1997, 53, 4013–
4034; (c) Simpson, T. J. Top. Curr. Chem. 1998, 195, 1–48.
4. (a) Holker, J. S. E.; Simpson, T. J. J. Chem. Soc., Chem. Commun. 1978, 626–627; (b)
McIntyre, C. R.; Simpson, T. J.; Moore, R. N.; Trimble, L. A.; Vederas, J. C. J. Chem.
Soc., Chem. Commun. 1984, 1498–1499; (c) Bartlett, A. J.; Holker, J. S. E.; O’Brien,
E. J. Chem. Soc., Chem. Commun. 1981, 1198–1200.
5. Danishefsky and co-workers synthesized cyclohexa-2,4-dienones by the re-
gioselective oxidative dearomatization of orthoquinones with phenyliodine(III)
diacetate.
5.1.9. Cycloadducts 23 and 24
Allylic alcohol 22 (25.2 mg, 0.0962 mmol, 1.0 equiv) was dis-
solved in toluene (2 mL) and heated to 80 ꢁC in a sealed vial under
an atmosphere of argon for five days. The reaction was cooled to
room temperature and concentrated under reduced pressure. Pu-
rification by column chromatography (SiO2, 1:3/2:3 EtOAc/hex-
anes) provided 21.9 mg (87%) of the desired cycloadducts as
a mixture of products (23/24a/24b¼1.0:1.8:0.6). Analytical samples
were obtained by preparatory thin layer chromatography (SiO2, 1:3
EtOAc/hexanes/4:6:1 EtOAc/hexanes/MeOH). 24b. TLC: Rf¼0.32
(SiO2, 1:3:6 MeOH/EtOAc/hexanes); IR (film) 3472, 1755, 1725, 1711,
1666 cmꢀ1 1H NMR (500 MHz, CDCl3)
; d 6.92 (s, 1H), 4.79 (d,
J¼11.2 Hz, 1H), 4.56 (d, J¼11.2 Hz, 1H), 3.92 (d, J¼6.5 Hz, 1H), 2.28
(dd, J¼15.5, 6.5 Hz, 1H), 1.63 (d, J¼15.5 Hz, 1H), 1.42 (d, J¼13.8 Hz,
1H), 1.36–1.30 (m, 4H), 1.18 (s, 3H), 1.15 (s, 3H); 13C NMR (125 MHz,
6. (a) Cook, S. P.; Gaul, C.; Danishefsky, S. J. Tetrahedron Lett. 2005, 46, 843–847; (b)
Cook, S. P.; Polara, A.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 16440–16441;
(c) Polara, A.; Cook, S. P.; Danishefsky, S. J. Tetrahedron Lett. 2008, 5906–5908.
7. Plietker, B.; Niggermann, M. Org. Lett. 2003, 5, 3353–3356.
8. Zhong, Y.; Shing, T. J. Org. Chem. 1997, 62, 2622–2624.
CDCl3)
d 213.3, 167.3, 139.1, 134.2, 79.4, 68.9, 58.4, 51.2, 51.2, 51.0,
9. Numbering corresponds to that previously assigned for the carbons in andi-
benin B.2a
46.5, 44.9, 19.2, 18.6, 17.1; HRMS (ESI-TOF) C15H18O4 m/z calcd for
[MþH]þ: 263.1278; found: 263.1276. 24a. TLC: Rf¼0.26 (SiO2, 1:3:6
10. Krishnamurthy, S. J. Org. Chem. 1981, 46, 4628–4629.
MeOH/EtOAc/hexanes); IR (film) 3477, 1760, 1726, 1662 cmꢀ1 1H
;
11. The relative stereochemistry of the major and minor diastereoisomers of allylic
alcohol 22 was deduced by the stereochemical assignments for cycloadducts 23
and 24.
NMR (500 MHz, CDCl3)
d 6.92 (s, 1H), 4.45–4.32 (m, 2H), 3.90 (dd,
12. Similar ‘twisted’ Diels–Alder adducts were also observed by Danishefsky and
J¼8.4, 5.1 Hz, 1H), 2.15 (d, J¼13.9 Hz, 1H), 2.01 (dd, J¼14.9, 10.0 Hz,
1H), 1.83 (d, J¼3.5 Hz, 1H, exchanges with D2O), 1.52 (dd, J¼14.9,
6.0 Hz, 1H), 1.32 (s, 3H), 1.04 (s, 6H), 0.91 (d, J¼13.9 Hz, 1H); 13C
co-workers during their studies en route to tashironin.6a
13. 13C shifts for these olefins also support this hypothesis. See Experimental data.
14. Heating to temperatures above 120 ꢁC led to the formation of several un-
characterized side products and reduced yield.
NMR (125 MHz, CDCl3)
d 213.1, 1667.0, 140.9, 133.2, 76.9, 67.5, 58.4,