Indrani et al. / Journal of Molecular Structure 931 (2009) 35–44
M.
44
Eukaryotes, Handbook of Metalloproteins, John Wiley & Sons, Chichester, UK,
2001, p. 1284.
[15] M.E. Stroupe, M. DiDonato, J.A. Tainer, in: A. Messerschmidt (Ed.), Manganese
at the inhibition zone developed. The percentage inhibition was
calculated as 100(C–T)/C, where C is the average diameter of bacte-
ria or fungal growth on the control plate (water) and T is the aver-
age diameter of bacteria or fungal growth on the test plate. The
susceptibility zones were measured in diameter (mm) and the re-
sults are shown in Tables 5 and 6. The susceptibility zones mea-
sured were the clear zones around the discs killing the bacteria.
The complexes individually exhibit varying degrees of inhibitory
effect on the growth of the tested bacterial species. On complexa-
tion, the polarity of the metal ion will be reduced to a greater ex-
tent due to the overlap of the ligand orbital and partial sharing
of the positive charge of the metal ion with the donor groups. Fur-
Superoxide Dismutase, Handbook of Metalloproteins, John Wiley
Chichester, UK, 2001, p. 941.
& Sons,
[16] T.A. Jackson, T.C. Brunold, Acc. Chem. Res. 37 (2004) 461.
[17] J.W. Whittaker, in: H. Sigel, A. Sigel (Eds.), Manganese Superoxide Dismutase,
Metal Ions in Biological Systems, vol. 37, Marcel Dekker, 2000, p. 587.
[18] F. Tani, Y. Matsumoto, Y. Tachi, T. Sasaki, Y. Naruta, J. Chem. Soc., Chem.
Commun. (1998) 1731.
[19] Y.C. Fann, I. Ahmed, N.J. Blackburn, J.S. Boswell, M.L. Verkhovskaya, B.M.
Hoffman, M. Wikstrom, Biochemistry 34 (1995) 10245.
[20] H. Pang, M. Bartlam, Q. Zeng, H. Miyatake, T. Hisano, K. Miki, L.-L. Wong, G.F.
Gao, Z. Rao, J. Biol. Chem. 279 (2004) 1491.
[21] F. Al-Mjeni, T. Ju, T.C. Pochapsky, M.J. Maroney, Biochemistry 41 (2002) 6761.
[22] F.H. Allen, Acta Crystallgr. B58 (2002) 380.
[23] C. Anderson, A.L. Beauchamp, Can. J. Chem. 73 (1995) 471.
[24] A.M. Atria, A. Vega, C. Contreras, J. Valenzuela, E. Spodin, Inorg. Chem. 38
(1999) 5681.
ther, it increases the delocalization of
p-electrons over the whole
ligand and enhances the penetration of complexes into lipid mem-
branes leading to the blocking of the metal binding sites in the en-
zymes of microorganisms. The complexes may also disturb the
respiration process of the cell and thus block the synthesis of pro-
teins, which restricts further growth of the organism [65].
[25] G. Mestroni, E. Alessio, A.S. Santi, S. Geremia, A. Bergamo, G. Sava, A. Boccarelli,
A. Schettino, M. Coluccia, Inorg. Chim. Acta 273 (1998) 62.
[26] P. Mura, A. Casini, G. Marcon, L. Messori, Inorg. Chim. Acta 312 (2001) 74.
[27] N. Masciocchi, G.A. Ardizzoia, S. Brenna, F. Castelli, S. Galli, A. Maspero, A.
Sironi, Chem. Commun. 16 (2003) 2018.
[28] F. Lambert, J.P. Renault, C. Policar, I.M. Badarau, M. Cesario, Chem. Commun. 1
(2000) 35.
[29] X.C. Huang, J.P. Zhang, Y.Y. Lin, X.L. Yu, X.M. Chen, Chem. Commun. 9 (2004)
1100.
[30] O. Sanchiz, Y.R. Martín, C.R. Pérez, A. Mederos, F. Lloret, M. Julve, New J. Chem.
11 (2002) 1624.
[31] B.H. Ye, T. Mak, I.D. Williams, X.Y. Li, J. Chem. Soc., Dalton Trans. 12 (1998)
1935.
4. Conclusion
In summary, three new complexes, [Co(imi)2(tmb)2] (1),
{[Ni(tmb)2(H2O)3]Á2H2O}n (2) and [Cu2(
l-tmb)4(CH3OH)2] (3),
were synthesized by hydrothermal reactions. Their structures were
characterized by X-ray crystallography, UV/VIS, IR spectra, elemen-
tal analysis, TGA and magnetic susceptibility measurements. Small
negative value of Weiss constant (h) shows a weak intermolecular
antiferromagnetic interaction in 1 and 1a. The synthesized com-
plexes show considerable antimicrobial activity.
[32] B.K. Keppler, W. Rupp, U.M. Juhl, H. Endres, R. Niebl, W. Balzer, Inorg. Chem. 26
(1987) 4366.
[33] Z.W. Mao, K.B. Yu, D. Chen, Inorg. Chem. 32 (1993) 3104.
[34] A. Santoro, A.D. Mighell, M. Zocchi, Acta Cryst B25 (1969) 842.
[35] C.W. Reimann, A. Santoro, A.D. Mighell, Acta Crystallogr. B26 (1970) 521.
[36] J.M. Ivarsson, W. Forsling, Acta Crystallogr. B35 (1979) 1896.
[37] S.Y. Niu, Z.Z. Yang, Chem. J. Chin. Univ. 20 (1999) 1671.
[38] P.S. Zhao, F.F. Jian, L.D. Lu, X.J. Yang, X. Wang, R.S. Sundara, H.K. Fun, Chin. J.
Inorg. Chem. 16 (2000) 964.
[39] A.M. Atria, P. Cortes, M.T. Garland, R. Baggio, Acta Crystallogr. C59 (2003)
m396.
[40] F.F. Jian, P.S. Zhao, H.L. Xiao, S.S. Zhang, Chin. J. Chem. 20 (2002) 1134.
[41] K.B. Shiu, C.H. Yen, F.L. Liao, S.L. Wang, Acta Cryst. E59 (2003) m1189.
[42] M. Eddaoudi, H. Li, T. Reineke, M. Fehr, D. Kelley, T. Groy, O.M. Yaghi, Top.
Catal. 9 (1999) 105.
5. Supplementary material
CCDC 689650, 689651, 689652, 689653 and 695666 contain the
supplementary crystallographic data for this paper. These data can
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336
033; or e-mail: deposit@ccdc.cam.ac.uk.
[43] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and
biology, Oxford: University Press, 1999.
[44] E.R.T. Tiekink, J.J. Vittal (Eds.), Frontiers in Crystal Engineering, Chichester,
John Wiley, 2006.
[45] O.M. Yaghi, G. Li, H. Li, Nature 378 (1995) 703.
Acknowledgements
[46] R. Murugavel, G. Anantharaman, D. Krishnamurthy, M. Sathiyendiran, M.G.
Walawalkar, Proc. Indian Acad. Sci. (Chem. Sci.) 112 (2000) 273.
[47] D. Krishnamurthy, R. Murugavel, Indian J. Chem. A42 (2003) 2267.
[48] S. Konar, P.S. Mukherjee, E. Zangrando, M.G.B. Drew, C. Diaz, J. Ribas, N.R.
Chaudhuri, Inorg. Chim. Acta 358 (2005) 29.
[49] M.J. Plater, M.R. St, J. Foreman, R.A. Howie, J.M.S. Skakle, A.M.Z. Slawin, Inorg.
Chim. Acta 315 (2001) 126.
[50] B.R. Srinivasan, J.V. Sawant, P. Raghavaiah, J. Chem. Sci. 119 (2007) 11–20.
[51] Z. Otwinowski, W. Minor, C.W. Carter, Jr., R.M. Sweet (Eds.), Methods in
Enzymology, vol. 276, Macromolecular Crystallography, Part A, Academic
Press, New York, 1997, pp. 307–326.
[52] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112–122.
[53] Bruker, SMART (Version 5.625) and SAINT (Version 6.23c). Bruker AXS Inc.
Madison,Wisconsin,USA, 1999.
[54] G.M. Sheldrick, SHELXTL- User’s Manual. Siemens Analytical X-ray
Instruments Inc, Madison, Wisconsin, USA, 2000.
[55] M.C. Etter, J.C. MacDonald, J. Bernstein, Acta Cryst. B46 (1990) 256–262.
[56] D. Cremer, J.A. Pople, J. Am. Chem. Soc. 19 (1975) 1354–1357.
[57] J.C.A. Boeyens, J. Cryst. Mol. Struct. 8 (1978) 317–320.
[58] M. Padmanabhan, K.C. Joseph, A. Thirumurugan, X. Huang, T.J. Emge, J. Li,
Inorg. Chim. Acta. 360 (2007) 2583–2588.
The authors (M.I. and R.R.) acknowledge CSIR, New Delhi for
providing financial support through Senior Research Fellowship.
Dr. F.R.F. acknowledges the Louisiana Board of Regents for the pur-
chase of the diffractometer by Grant No. LEQSF(1999–2000)-ENH-
TR-13.
References
[1] J.A. Ibers, R.H. Holm, Science 209 (1980) 223.
[2] M.M. Harding, Acta Crystallogr D57 (2001) 401.
[3] R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (1996) 2239.
[4] S. Ferguson-Miller, G.T. Babcock, Chem. Rev. 96 (1996) 2889.
[5] B.J. Wallar, J.D. Lipscomb, Chem. Rev. 96 (1996) 2625.
[6] I.M. Wasser, S. de Vries, P. Moënne-Loccoz, I. Schröder, K.D. Karlin, Chem. Rev.
102 (2002) 1201.
[7] G. Parkin, Chem. Rev. 104 (2004) 699.
[8] D.H. Flint, R.M. Allen, Chem. Rev. 96 (1996) 2315.
[9] L.E. Cheruzel, M.R. Cecil, S.E. Edison, M.S. Mashuta, M.J. Baldwin, R.M.
Buchanan, Inorg. Chem. 45 (2006) 3191.
[10] D.W. Christianson, C.A. Fierke, Acc. Chem. Res. 29 (1996) 331.
[11] M.A. Halcrow, in: J.A. McCleverty, T.J. Meyer (Eds.), Monocopper Oxygenases,
Comprehensive Coordination Chemistry II, Elsevier, Oxford, UK, 2004, p. 395.
[12] G. Bartosz, in: T. Grune (Ed.), Superoxide Dismutases and Catalase, Handbook
of Environmental Chemistry, Springer, Berlin, Germany, 2005, p. 109.
[13] A.-F. Miller, in: A. Messerschmidt (Ed.), Handbook of Metalloproteins, Fe
Superoxide Dismutase, John Wiley & Sons, Chichester, UK, 2001, p. 668.
[14] D. Bordo, A. Pesce, M. Bolognesi, M.E. Stroppolo, M. Falconi, A. Desideri, in: A.
Messerschmidt (Ed.), Copper–Zinc Superoxide Dismutase in Prokaryotes and
´
[59] L. Sieron, Acta Crystallogr. C63 (2007) m199–m200.
[60] P.W. Borthwick, Acta. Crystallogr. B36 (1980) 628–632.
[61] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fourth ed., Wiley, New York, 1986.
[62] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, New York,
1968.
[63] O.N. Irobi, M. Moo-Young, W.A. Anderson, Int. J. Pharm. 34 (1996) 87.
[64] M.J. Pelczar, E.C.S. Chan, N.R. Krieg, Microbiology, fifth ed., Blackwell Science,
New York, 1998.
[65] N. Dharmaraj, P. Viswanathamurthi, K. Natarajan, Trans. Met. Chem. 26 (2001)
105.