5112
J. D. Butler et al. / Tetrahedron Letters 50 (2009) 5110–5112
interaction with the nitrile oxide and hence the unexpectedly high
trans (e.g., 9a/10a/11a/14a) selectivity observed, we next prepared
cyclopentenes with sulfide (15), methylsulfone (16), and diethyl
phosphonate (17 and 18) substituents (Scheme 4).
Sulfide analog 15 shows little facial selectivity. In contrast,
methylsulfone analog 16 shows good diastereoselectivity (Table
1, entries 13–16). The examples employing a diethyl phosphonate
group in place of the phenylsulfonyl show little facial selectivity
and, in this regard, are similar to the phenyl-substituted cases from
Scheme 1. These data are tabulated in Table 1, entries 17–20.
To extend and further generalize the facial directing properties
of the phenylsulfonyl moiety in mCPBA-mediated epoxidations, we
exposed a selection of our 4,4-disubstituted cyclopentenes (2, 7,
and 12; Table 2) to epoxidation conditions yielding 19a/19b, 20a/
20b, and 21a/21b. The mCPBA-mediated epoxidation of 12 gives
only 21a and, in parallel, the epoxidation of 7 is also completely
selective yielding only 20a. Diastereomer 20a was analyzed by
X-ray crystallography to establish that epoxidation also proceeds
trans to the phenylsulfone moiety (see Fig. 3). This is contrasted
by the mediocre selectivity observed in the epoxidation of 2 which
yields a 2.5:1 mixture of 19a and 19b.
Figure 3. X-ray crystal structure of epoxide 20a.
tions of these selective trends are currently under investigation
and will be reported in due course.
Although the origin of this sulfone-based facial selectivity
remains unclear, an interesting trend in our 4,4-disubstituted
cyclopentenes is observed. All of the sulfone-substituted cyclo-
pentenes are quite selective, even when steric disparity between
the two cyclopentene substituents is not large (compare entries
5–12 and 15–16, Table 1). This suggests that cyclopentene confor-
mation as well as sulfone-based coulombic interactions lead to the
observed selectivity trend. As a consequence, the sulfide analog of
sulfone 6a, cyclopentene 15, shows no selectivity (entries 5–6 and
13–14)13 and exchanging the sulfone substituent for a phenyl sub-
stituent also leads to negligible selectivity (entries 1–4, Table 1).
Likewise, exchanging the sulfone for a diethyl phosphonate leads
to much reduced facial selectivity (entries 17–20, Table 1). Applica-
Acknowledgments
The authors thank the National Science Foundation (CHE-
0614756) for their financial support of this work. NMR spectrome-
ters used were partially funded by the National Science Foundation
(CHE-0443516 and CHE-9808183).
Supplementary data
1H NMR and 13C NMR data are provided. Crystallographic data
(excluding structure factors) for the structures in this Letter have
been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication nos. CCDC 730064, 730065, and
730066. Copies of these data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK,
(fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.Uk).
Supplementary data associated with this article can be found, in
O
P
O
O
EtO
EtO
S
CN
S
CN
R
Ph
Me
15
16
17; R = CN
18; R = Ph
References and notes
1. Mabrour, M.; Bougrin, K.; Benhida, R.; Loupy, A.; Soufiaoui, M. Tetrahedron Lett.
2006, 48, 443–447.
2. Furstner, A.; Fenster, M. D. B.; Fasching, B.; Godbout, C.; Radkowski, K. Angew.
Chem., Int. Ed. 2006, 45, 5510–5515.
3. Nath, M.; Mukhopadhyay, R.; Bhattacharjya, A. Org. Lett. 2006, 8, 317–320.
4. Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.; Piccagli, L.;
Baruchello, R.; Rossi, M.; Romagnoli, R.; Invidiata, F. P.; Grimaudo, S.; Jung, M.
K.; Hamel, E.; Gebbia, N.; Crosta, O. L.; Abbadessa, O. V.; Di Cristina, A.;
Dusonchet, L.; Meli, M.; Tolomeo, M. J. Med. Chem. 2005, 48, 723–736.
5. Del Corral, J. M. M.; Gordaliza, M.; Castro, M. A.; Lopez-Vazquez, M. L.; Garcia-
Gravalos, M. D.; Broughton, H. B.; San Feliciano, A. Tetrahedron 1997, 53, 6555–
6564.
bleach
15, 16, 17, or 18
Table 1
entries 13-20
HO
N
Ar
DCM
Scheme 4. Synthetic route to selected cyclopentenes and their 3aH-cyclo-
penta[d]isoxazole derivatives.
Table 2
6. Pellissier, H. Tetrahedron 2007, 63, 3235–3285.
Synthetic scheme and tabulated selectivity data
7. Becker, N.; Carreira, E. M. Org. Lett. 2007, 9, 3857–3858.
8. Quadrelli, P.; Fassardi, V.; Cardarelli, A.; Caramella, P. Eur. J. Org. Chem. 2002,
2058–2065.
X
Y
X
Y
X
Y
9. Brinkmann, Y.; Madhushaw, R. J.; Jazzar, R.; Bernardinelli, G.; Kuendig, E. P.
Tetrahedron 2007, 63, 8413–8419.
10. Sibi, M. P.; Itoh, K.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126, 5366–5367.
11. Tsuji, M.; Ukaji, Y.; Inomata, K. Chem. Lett. 2002, 1112–1113.
12. Kanemasa, S.; Kobayashi, S.; Nishiuchi, M.; Yamamoto, H.; Wada, E.
Tetrahedron Lett. 1991, 32, 6367–6370.
13. Kim, K. S.; Kim, B. H.; Park, W. M.; Cho, S. J.; Mhin, B. J. J. Am. Chem. Soc. 1993,
115, 7472–7477.
14. Rai, K. M. L.; Hassner, A. Synth. Commun. 1997, 27, 467–472.
15. Ye, Y.; Zheng, Y.; Xu, G.-Y.; Liu, L.-Z. Heteroat. Chem. 2003, 14, 254–257.
16. Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Raimondi, L. Eur. J. Org.
Chem. 1998, 1823–1832.
mCPBA
+
CHCl3
60oC
2, 7, 12
O
O
Yield
(%)
b
Rxn
X=
Ph
Y=
a
%
%
60
2
19
70
30
CO2Me
CO2Me
7
20
SO2Ph
SO2Ph
100
100
0
0
64
75
12
21
Ph
17. Cheng, W.-C.; Kurth, M. J. J. Org. Chem. 2002, 67, 4387–4391.
18. Corey, E. J.; Feiner, N. F. J. Org. Chem. 1980, 45, 765–780.
19. Sukata, K. Bull. Chem. Soc. Jpn. 1984, 57, 613–614.