P. Vandurm et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4806–4809
4809
the bromine atom inserts between K156 and K159 residues. The
quinolinone ring is close to the N155 side chain. In the second
binding mode depicted in Figure 5b right, the Mg2+ metal ion is
chelated in a bidentate manner by the quinolinone carbonyl oxy-
gen and by the carboxylate group. The bromine atom is oriented
towards the catalytic loop and the p-F-benzyl moiety is located be-
tween K156 and K159. Both binding modes highlight the impor-
tance of the DKA moiety for the chelation of the Mg2+ and
particularly the carboxylate group which could explain the stron-
ger inhibitory potency of acidic compound 2 compared to ester
compound 1. At this stage, it is difficult to discriminate between
the two proposed binding modes and one can not exclude other
potential ones. Indeed, docking studies show some limitations such
as the use of a rigid protein (and metal ion cofactor) and a scoring
function which does not take correctly into account the energetic
contributions issued from metal ion chelation and other weak
interactions such as hydrogen bonds and van der Waals forces. Fur-
thermore, the presence of viral DNA and the existence of a second
Mg2+ in the catalytic pocket can be also considered as recently sug-
gested.20 The obtention of crystal structure of enzyme/DNA/inhib-
itor complexes should help to clarify the inhibition mechanism.
Nevertheless, these modelling studies show the relevance of
synthesizing compounds able to simultaneously chelate metal
ion (pocket 1) and fill the two other depicted cavities (pockets
2 and 3). Within this context, bromine atom could be replaced
by various substituents depending on the binding mode con-
sidered. In the first binding mode (Fig. 5b left), bromine atom
could be substituted by anionic groups able to form electro-
static interactions with K156 and K159 residues. In the second
binding mode (Fig. 5b right), the bromine could be replaced
by big hydrophobic moieties filling pocket 3. These pharmaco-
modulations should increase the inhibitory potency of our ser-
ies of derivatives. Furthermore, resulting structure–activity
relationships should help to discriminate between binding
modes.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Engelman, A.; Mizuuchi, K.; Craigie, R. Cell 1991, 67, 1211; (b) Chiu, T. K.;
Davies, D. R. Curr. Top. Med. Chem. 2004, 4, 965; (c) Delelis, O.; Carayon, K.; Sa,
A.; Deprez, E.; Mouscadet, J.-F. Retrovirology 2008, 5, 114.
2. (a) LaFemina, R. L.; Schneider, C. L.; Robbins, H. L.; Callahan, P. L.; LeGrow, K.;
Roth, E.; Schleif, W. A.; Emini, E. A. J. Virol. 1992, 66, 7414; (b) Debyser, Z.;
Cherepanov, P.; Van Maele, B.; De Clercq, E.; Witvrouw, M. Antiviral Chem.
Chemother. 2002, 13, 1.
3. (a) Cotelle, P. Recent Pat. Anti-Infect. Drug Discovery 2006, 1, 1; (b) Dubey, S.;
Satyanarayana, Y. D.; Lavania, H. Eur. J. Med. Chem. 2007, 42, 1159; (c) Makhija,
M. T. Curr. Med. Chem. 2006, 13, 2429; (d) Serrao, E.; Odde, S.; Ramkumar, K.;
Neamati, N. Retrovirology 2009, 6, 25.
4. Billich, A. Curr. Opin. Invest. Drugs 2003, 4, 206.
5. (a) Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.;
Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D. J.; Jones, P.; Kinzel, O.; Laufer,
R.; Monteagudo, E.; Muraglia, E.; Nizi, E.; Orvieto, F.; Pace, P.; Pescatore, G.;
Scarpelli, R.; Stillmock, K.; Witmer, M. V.; Rowley, M. J. Med. Chem. 2008, 51,
5843; (b) Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito,
Y.; Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Ikeda, S.;
Kodama, E.; Matsuoka, M.; Shinkai, H. J. Med. Chem. 2006, 49, 1506; (c) Hazuda,
D.; Iwamoto, M.; Wenning, L. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 377.
6. (a) Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J. A.;
Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287,
646; (b) Grobler, J. A.; Stillmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A.
S.; Wolfe, A.; Egbertson, M.; Bourgeois, M.; Melamed, J.; Wai, J. S.; Young, S.;
Vacca, J.; Hazuda, D. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6661; (c) Pommier,
Y.; Johnson, A. A.; Marchand, C. Nat. Rev. Drug Discovery 2005, 4, 236; (d) Bacchi,
A.; Biemmi, M.; Carcelli, M.; Carta, F.; Compari, C.; Fisicaro, E.; Rogolino, D.;
Sechi, M.; Sippel, M.; Sotriffer, C. A.; Sanchez, T. W.; Neamati, N. J. Med. Chem.
2008, 51, 7253.
7. Goldgur, Y.; Craigie, R.; Cohen, G.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.;
Sugimoto, H.; Endo, T.; Murai, H.; Davies, D. R. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 13040.
8. Di Santo, R.; Costi, R.; Roux, A.; Artico, M.; Lavecchia, A.; Marinelli, L.; Novellino,
E.; Palmisano, L.; Andreotti, M.; Amici, R.; Galluzzo, C. M.; Nencioni, L.;
Palamara, A. T.; Pommier, Y.; Marchand, C. J. Med. Chem. 2006, 49, 1939.
9. Di Santo, R.; Costi, R.; Roux, A.; Miele, G.; Crucitti, G. C.; Iacovo, A.; Rosi, F.;
Lavecchia, A.; Marinelli, L.; Di Giovanni, C.; Novellino, E.; Palmisano, L.;
Andreotti, M.; Amici, R.; Galluzo, C. M.; Nencioni, L.; Palamara, A. T.; Pommier,
Y.; Marchand, C. J. Med. Chem. 2008, 51, 4744.
10. Leh, H.; Brodin, P.; Bischerour, J.; Deprez, E.; Tauc, P.; Brochon, J-C.; LeCam, E.;
Coulaud, D.; Auclair, C.; Mouscadet, J.-F. Biochemistry 2000, 39, 9285.
11. Wei, X.; Decker, J. M.; Liu, H.; Zhang, Z.; Arani, R. B.; Kilby, J. M.; Saag, M. S.; Wu,
X.; Shaw, G. M.; Kappes, J. C. Antimicrob. Agents Chemother. 2002, 46, 1896.
12. (a) Pais, G. C. G.; Zhang, X.; Marchand, C.; Neamati, N.; Cowansage, K.;
Svarovskaia, E. S.; Pathak, V. K.; Tang, Y.; Nicklaus, M.; Pommier, Y.; Burke, T. R.
J. Med. Chem. 2002, 45, 3184; (b) Sechi, M.; Derudas, M.; Dallocchio, R.; Dessi,
A.; Bacchi, A.; Sannia, L.; Carta, F.; Palomba, M.; Ragab, O.; Chan, C.; Shoemaker,
R.; Sei, S.; Dayam, R.; Neamati, N. J. Med. Chem. 2004, 47, 5298; (c) Patil, S.;
Kamath, S.; Sanchez, T.; Neamati, N.; Schinazi, R. F.; Buolamwini, J. K. Bioorg.
Med. Chem. 2007, 15, 1212.
Acknowledgments
This research was supported by grants from the DGTRE (Direc-
tion générale des Technologies, de la Recherche et de l’Energie,
Région Wallonne) (Programs WALEO). P. Vandurm thanks F.R.I.A
for financial support. We also thank the mass spectrometry labora-
tory of Catholic University of Leuven (Raoul Rozenberg and Alexan-
der Spote).
13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
et al. GAUSSIAN 03, Gaussian, Wallingford CT, 2004.
14. (a) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267,
727; (b) SYBYL 8.0, Tripos International, 1699 South Hanley Rd., St. Louis,
Missouri 63144, USA.
Supplementary data
15. Maignan, S.; Guilloteau, J. P.; Zhou-Liu, Q.; Clement-Mella, C.; Mikol, V. J. Mol.
Biol. 1998, 282, 359.
16. Jenkins, T. M.; Esposito, D.; Engelman, A.; Craigie, R. EMBO J. 1997, 16, 6849.
17. Alves, C. N.; Marti, S.; Castillo, R.; Andres, J.; Moliner, V.; Tunon, I.; Silla, E.
Biophys. J. 2008, 94, 2443.
18. Wielens, J.; Crosby, I. T.; Chalmers, D. K. J. Comput. Aided Mol. Des. 2005, 19, 301.
19. Spek, A. L. ‘PLATON: A Multipurpose Crystallographic Tool’, 2001, University of
Utrecht; Utrecht, The Netherlands.
20. Ferro, S.; De Luca, L.; Barreca, M. L.; Iraci, N.; De Grazia, S.; Christ, F.; Witvrouw,
M.; Debyser, Z.; Chimirri, A. J. Med. Chem. 2009, 52, 569.
Chemistry: synthetic pathway and compounds spectroscopic
data; biology: protocols for in vitro experiments, antiviral activities
and cytotoxicity measurements; structural and modelling studies:
crystal data and docking parameters. CCDC 730039 contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-