6508
A.B. Smith III et al. / Tetrahedron 65 (2009) 6489–6509
22. Smith, A. B., III; Chen, S. S.-Y.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am.
Supplementary data
Chem. Soc. 1995, 117, 12013.
23. (a) Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543; (b)
Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467; (c)
Molinski, T. F.; Searle, P. A.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996,
118, 9422.
Supplementary data associated with this article can be found, in
24. The configuration of the newly formed stereocenter was assigned using the
Mosher’s ester analysis. See Ref. 10.
25. Fujita, E.; Nagao, Y.; Kaneko, K. Chem. Pharm. Bull. 1978, 26, 3743.
26. Attempts to equilibrate the undesired ketone (þ)-57, employing the same
conditions, produced only a 1:1.2 mixture of spiroketals (Scheme 20), sug-
gesting that (þ)-57 does not possess the proper combination of geometry and
functionality to coordinate effectively with calcium ion and thereby lead to the
desired (AE) product.
27. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong,
K. S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem.
1992, 57, 2768.
References and notes
1. (a) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.; Schmidt, J. M.;
Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302; (b) Kobayashi, M.; Aoki, S.; Sakai,
H.; Kawazoe, K.; Kihara, N.; Sasaki, T.; Kitagawa, I. Tetrahedron Lett. 1993, 34,
2795; (c) Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 115,
3977.
2. Pettit noted that 400 kg of wet sponge yielded only 13.8 mg of (þ)-spongistatin
1, see: Ref. 1a.
28. Diol stereochemistry was assigned based on the Sharpless precedent. See: Ref. 27.
29. Assignment of the structure of (ꢀ)-3, specifically the C(15) and C(16) stereo-
centers was achieved via extensive NMR studies (see Supplementary data). In
addition, we preformed a chemical correlation involving spectroscopic com-
parison with an intermediate (compound 7 in Ref. 3r) employed in the Paterson
synthesis of (þ)-spongistatin.
3. (a) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew. Chem., Int. Ed. 1997, 36, 2738;
(b) Evans, D. A.; Trotter, B. W.; Coˆte´, B.; Coleman, P. J. Angew. Chem., Int. Ed. 1997,
36, 2741; (c) Evans, D. A.; Trotter, B. W.; Cote, B.; Coleman, P. J.; Dias, L. C.; Tyler,
ˆ ´
A. N. Angew. Chem., Int. Ed. 1997, 36, 2744; (d) Evans, D. A.; Trotter, B. W.;
ˆ ´
Coleman, P. J.; Cote, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N. Tetrahedron 1999,
55, 8671; (e) Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward,
M. M.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 187; (f) Hayward, M. M.; Roth, R.
M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. Angew. Chem., Int. Ed.
1998, 37, 190; (g) Smith, A. B., III; Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar, M.
D.; Boldi, A. M.; Moser, W. H.; Murase, N.; Nakayama, K.; Sobukawa, M. Angew.
Chem., Int. Ed. 2001, 40, 191; (h) Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang,
L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew.
Chem., Int. Ed. 2001, 40, 196; (i) Smith, A. B., III; Zhu, W.; Shirakami, S.; Sfoug-
gatakis, C.; Doughty, V. A.; Bennett, C. S.; Sakamoto, Y. Org. Lett. 2003, 5, 761; (j)
Smith, A. B., III; Tomioka, T.; Risatti, C. A.; Sperry, J. B.; Sfouggatakis, C. Org. Lett.
2008, 19, 4359; (k) Paterson, I.; Chen, D. Y. K.; Coster, M. J.; Acena˜, J. L.; Bach, J.;
Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace, D. J.;
Hodgson, A. P.; Norcross, R. D. Angew. Chem., Int. Ed. 2001, 40, 4055; (l) Crim-
mins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem.
Soc. 2002, 124, 5661; (m) Hubbs, J. L.; Heathcock, C. H. J. Am. Chem. Soc. 2003,
125, 12836; (n) Heathcock, C. H.; McLaughlin, M.; Medina, J.; Hubbs, J. L.;
Wallace, G. A.; Scott, R.; Claffey, M. M.; Hayes, C. J.; Ott, G. R. J. Am. Chem. Soc.
2003, 125, 12844; (o) Ball, M.; Gaunt, M. J.; Hook, D. F.; Jessiman, A. S.; Kawa-
hara, S.; Orsini, P.; Scolaro, A.; Talbot, A. C.; Tanner, H. R.; Yamanoi, S.; Ley, S. V.
Angew. Chem., Int. Ed. 2005, 44, 5433; (p) Smith, A. B., III; Doughty, V. A.;
Sfouggatakis, C.; Bennett, C. S.; Koyanagi, J.; Takeuchi, M. Org. Lett. 2002, 4, 783;
(q) Paterson, I.; Wallace, D. J.; Oballa, R. M. Tetrahedron Lett. 1998, 39, 8545; (r)
Paterson, I.; Chen, D. Y. K.; Coster, M. J.; Acena, J. L.; Bach, J.; Wallace, D. J. Org.
Biomol. Chem. 2005, 3, 2431.
30. Dithiane (ꢀ)-64 was constructed via a slight modification of our spongistatin 2
approach to this subunit (see Supplementary data).
31. (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919; (b) Jadhav, P. K.;
Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432.
32. Crimmins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am.
Chem. Soc. 2002, 124, 5661.
33. Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505.
34. Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
35. (a) Loh, T.-P.; Zhou, J.-R.; Yin, Z. Org. Lett. 1999, 1, 1855; (b) Li, C. J. J. Chem. Rev.
1993, 93, 2023.
36. Riley, H. L.; Morley, J. F.; Friend, N. A. C. J. Chem. Soc. 1932, 1875.
37. Related efforts using TASF [tris(diethylamino)sulfonium fluoride] as a fluoride
source also proved ineffective, see: Scheidt, K. A.; Chen, H.; Follows, B. C.;
Chemler, S. R.; Coffey, D. S.; Roush, W. R. J. Org. Chem. 1998, 63, 6436.
38. These conditions comprise a modification of those reported by Hirota and co-
workers: Sajiki, H.; Kuno, H.; Hirota, K. Tetrahedron Lett. 1997, 38, 399.
39. Wada, M.; Ohki, H.; Akiba, K. Bull. Chem. Soc. Jpn. 1990, 63, 1738.
40. (a) Hanawa, H.; Kii, S.; Asao, N.; Maruoka, K. Tetrahedron Lett. 2000, 41, 5543;
(b) Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935.
´
41. (a) Trost, B. M.; Herndon, J. W. J. Am. Chem. Soc. 1984, 106, 6835; (b) Ple, P. A.;
Hamon, A.; Jones, G. Tetrahedron 1997, 53, 3395.
42. We attribute the low yield of this reaction to the instability of the chlorodiene
unit to the conditions used for the purification.
43. (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc.
Jpn. 1979, 52, 1989; (b) Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O. Tetra-
hedron 1990, 46, 4613.
44. (a) Wittig, G.; Davis, P.; Koening, G. Chem. Ber. 1951, 84, 627; (b) Seebach, D.
Angew. Chem., Int. Ed. Engl. 1979, 18, 239.
4. (a) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. T.; Kaufman, M. D.; Qiu, Y.;
Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654; (b)
Smith, A. B., III; Freeze, B. S. Tetrahedron 2008, 64, 261.
5. Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.;
Boldi, A. M.; Murase, N.; Moser, W. H.; Brook, C. S.; Bennett, C. S.; Nakayama, K.;
Sobukawa, M.; Trout, R. E. L. Tetrahedron, in press.
6. (a) Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 14, 4833; (b) For a recent
review, see: Dumeunier, R.; Marko, I. E. Julia Olefination. In Modern Car-
bonyl Olefination; Takeda, T., Ed.; Wiley-VCH Verlag GmbH
45. (a) Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779; (b) Petasis, N. A.; Lu, S.
P. Tetrahedron Lett. 1996, 37, 141.
46. (þ)-Phorboxazole: (a) Smith, A. B., III; Verhoest, P. R.; Minbiole, K. P.; Lim, J. J.
Org. Lett. 1999, 1, 909; (b) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.;
Beauchamp, T. J. Org. Lett. 1999, 1, 913; (c) Smith, A. B., III; Minbiole, K. P.;
Verhoest, P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942; The Petasis–
Ferrier tactic has also been employed by us in the synthesis of (þ)-zampanolide
and (þ)-dactylolide: (d) Smith, A. B., III; Safonov, I. G.; Corbett, M. R. J. Am.
Chem. Soc. 2001, 123, 12426; (e) Smith, A. B., III; Safonov, I. G.; Corbett, R. M.
J. Am. Chem. Soc. 2002, 124, 11102; (ꢀ)-Kendomycin: (f) Smith, A. B., III; Mesaros,
E. F.; Meyer, E. A. J. Am. Chem. Soc. 2006, 128, 5292; (ꢀ)-Clavosolide A: (g) Smith,
A. B., III; Simov, V. Org. Lett. 2006, 8, 3315; (ꢀ)-Okilactomycin: (h) Smith, A. B.,
III; Basu, K.; Bosanac, T. J. Am. Chem. Soc. 2007, 129, 14872; For a review see: (i)
Smith, A. B., III; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008, 41, 675.
47. (a) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752; (b) Northrup,
A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2004,
43, 2152.
48. Seebach, D.; Imwinkelried, R.; Stucky, G. Helv. Chim. Acta 1987, 70, 448.
49. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
50. Davis, F. A.; Kumar, A.; Chen, B.-C. J. Org. Chem. 1991, 56, 1143.
51. Ka¨llstro¨m, S.; Erkkila¨, A.; Pihko, P. M.; Sjo¨holm, R.; Sillanpa¨a¨, R.; Leino, R. Synlett
2005, 751.
52. Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
53. Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew. Chem., Int. Ed.
Engl. 1971, 10, 330.
& Co, KGaA:
Weinheim, Germany, 2004; pp 104–150.
7. Smith, A. B., III; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925; For a review on
the evolution of the multicomponent linchpin protocol now termed Anion
Relay Chemistry (ARC), see: Smith, A. B., III; Wuest, W. M. Chem. Commun.
2008, 5883.
8. Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172.
9. (a) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 319; (b) Brown,
H. C.; Bhat, K. S.; Randan, R. S. J. Org. Chem. 1987, 52, 3701.
10. (a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092; (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512; (c) Sullivan, G.
R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143; (d) Hoye, T. R.; Jeffrey, C.
S.; Shao, F. Nat. Protocols 2007, 2, 2451.
11. (a) Duan, J. J. W.; Smith, A. B., III. J. Org. Chem. 1993, 58, 3703; (b) Duan, J. J. W.;
Sprengeler, P. A.; Smith, A. B., III. Tetrahedron Lett. 1992, 33, 6439.
12. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
13. Hicks, D. R.; Fraser-Reid, B. Synthesis 1974, 3, 203.
14. Work from our (þ)-spongistatin 2 synthesis had shown that the TES ether was
the optimal protecting group for the C(9) hydroxyl. See Ref. 5.
15. Walkup, R. D.; Kane, R. R.; Boatman, P. D., Jr.; Cunningham, R. T. Tetrahedron Lett.
1990, 31, 7587.
16. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Doling, U. H.; Gra-
bowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461.
17. Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeiker, B. Tetrahedron 1976, 32, 2157.
18. Shapiro, R. H. Org. React. 1976, 23, 405.
19. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
54. Imai, T.; Nishida, S. Synthesis 1993, 395.
55. Frenandez-Megia, E.; Gourlaouen, N.; Ley, S. V.; Rowlands, G. J. Synlett 1998,
991.
56. Although unable to orchestrate a satisfactory allylation strategy, the separable
mixture of diastereomers (þ)-134
confirm rigorously the stereochemical assignments of our advanced in-
, the ‘slower moving
b
and (þ)-134
a did provide an opportunity to
20. Over the years we have also deployed a stepwise coupling approach for the
synthesis of the AB aldehyde. Both the multicomponent linchpin coupling
tactic, as well as the stepwise approach have contributed significant amounts
of material toward the gram-scale effort.
21. Smith, A. B., III; Zhuang, L.; Brook, C. S.; Lin, Q.; Moser, W. H.; Trout, R. E. L.;
Boldi, A. M. Tetrahedron Lett. 1997, 38, 8671.
termediates via chemical correlation. Polyol (þ)-135
a
isomer’ (in reference to the TLC motilities of the two isomers), was identical in
all respects (500 MHz 1H NMR, 125 MHz 13C NMR, HRMS, IR, and chiroptic
properties) to our first-generation EF Wittig salt intermediate (þ)-101.