The MM calculations in the full system were carried out with
the MM3 force field.66 The van der Waals parameters for platinum
were taken from UFF force field.67 Torsional contributions
involving dihedral angles with the metal atom in terminal position
were set to zero.
2 Organofluorine Chemistry: Principles and Commercial Applications, ed.
R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum, New York, 1994.
3 J. Burdeniuc, B. Jedlicka and R. H. Crabtree, Chem. Ber., 1997, 130,
145.
4 J. L. Kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev., 1994,
94, 373.
5 W. D. Jones, Dalton Trans., 2003, 3991.
6 U. Mazurek and H. Schwarz, Chem. Commun., 2003, 1321.
7 T. Braun and R. N. Perutz, Chem. Commun., 2002, 2749.
8 H. Torrens, Coord. Chem. Rev., 2005, 249, 1957.
9 G. M. Brooke, J. Fluorine Chem., 1997, 86, 1.
Conclusions
In the present work the C–F bond activation of aromatic
compounds (perfluorobenzene and perfluoropyridine) has been
achieved by the [Pt2(m-S)2(dppp)2] complex. Recently, the same
complex has been used to activate the aliphatic substrate 1,3-
difluoro-2-propanol (Scheme 1).34 These two examples show the
efficiency of [Pt2(m-S)2(dppp)2] to activate C–F bonds of organic
substrates by nucleophilic substitution. In the case of 1,3-difluoro-
2-propanol, the computational study of the reaction mechanism
revealed an important effect of the OH group assisting the fluorine
10 Organo-Fluorine Compounds, ed. B. Baasner, H. Hagemann and
J. C. Tatlow, Stuttgart, New York, 4th edn, 2000, E 10b/Part 2, 880.
11 M. Aizenberg and D. Milstein, Science, 1994, 265, 359.
12 A. Steffen, M. I. Sladek, T. Braun, B. Neumann and H. G. Stammler,
Organometallics, 2005, 24, 4057.
13 T. Schaub, M. Backes and U. Radius, J. Am. Chem. Soc., 2006, 128,
15964.
14 T. Braun, F. Wehmeier and K. Altenhoner, Angew. Chem., Int. Ed.,
2007, 46, 5321.
15 R. Bosque, E. Clot, S. Fantacci, F. Maseras, O. Eisenstein, R. N. Perutz,
K. B. Renkema and K. G. Caulton, J. Am. Chem. Soc., 1998, 120, 12634.
16 M. Reinhold, J. E. McGrady and R. N. Perutz, J. Am. Chem. Soc.,
2004, 126, 5268.
17 S. Park, M. Pontierjohnson and D. M. Roundhill, J. Am. Chem. Soc.,
1989, 111, 3101.
18 R. P. Hughes, D. C. Lindner, A. L. Rheingold and L. M. LiableSands,
J. Am. Chem. Soc., 1997, 119, 11544.
19 R. P. Hughes, R. B. Laritchev, A. Williamson, C. D. Incarvito, L. N.
Zakharov and A. L. Rheingold, Organometallics, 2002, 21, 4873.
20 P. L. Shutov, S. S. Karlov, K. Harms, D. A. Tyurin, J. Sundermeyer, J.
Lorberth and G. S. Zaitseva, Eur. J. Inorg. Chem., 2004, 2498.
21 S. A. Macgregor, Chem. Soc. Rev., 2007, 36, 67.
22 A. Nova, S. Erhardt, N. A. Jasim, R. N. Perutz, S. A. Macgregor, J. E.
McGrady and A. C. Whitwood, J. Am. Chem. Soc., 2008, 130, 15499.
23 S. Erhardt and S. A. Macgregor, J. Am. Chem. Soc., 2008, 130,
15490.
2
departure in a SN process. In the case of perfluoropyridine and per-
fluorobenzene, this requirement is not necessary and consequently
the C–F bond activation in aromatic compounds seems to be
more general. The theoretical study has revealed that the reaction
proceeds through a SNAr mechanism, accounting for the different
experimental condition required in each reaction and for the
various products obtained. According to these results the different
reactivity of perfluorobenzene and perfluoropyridine towards I
resides in the kinetics of these reactions, their thermodynamics
being quite similar. The products of the first substitution (2f and
2n) are few kJ mol-1 below reactants (-4.3 and -7.4 kJ mol-1,
respectively) and the products of the second substitutions are
around 35 kJ mol-1 below in the two cases. On the contrary,
the energy barriers for the first C–F substitution are remarkably
different: 131.7 kJ mol-1 with perfluorobenzene and 85.9 kJ mol-1
with perfluoropyridine.
C–F bond activation in both organic substrates is also selective.
With perfluorobenzene the double C–F bond activation takes
place in ortho position. This is the only possibility considering the
disposition of the two sulfur atoms in complex I. This orientation
is not usual in reactions with thiolates where the substitution
of two fluorides is always in positions 1,4.10 In the case of
perfluoropyridine, the activation in para position with respect to
nitrogen is more common.9 As it has been shown in this study,
the reason in this case is not only kinetic but also thermodynamic
being 1n 28.2 kJ mol-1 more stable than 4n.
24 P. Gonzalez-Duarte, A. Lledos and R. Mas-Balleste, Eur. J. Inorg.
Chem., 2004, 3585.
25 S. W. A. Fong and T. S. A. Hor, J. Chem. Soc., Dalton Trans., 1999,
639.
26 J. Chatt and D. M. P. Mingos, J. Chem. Soc. A, 1970, 1243.
27 R. Ugo, G. La Monica, S. Cenini, A. Segre and F. Conti, J. Chem. Soc.
A, 1971, 522.
28 C. E. Briant, C. J. Gardner, T. S. A. Hor, N. D. Howells and D. M. P.
Mingos, J. Chem. Soc., Dalton Trans., 1984, 2645.
29 R. Mas-Balleste, M. Capdevila, P. A. Champkin, W. Clegg, R. A.
Coxall, A. Lledos, C. Megret and P. Gonzalez-Duarte, Inorg. Chem.,
2002, 41, 3218.
30 S. H. Chong, A. Tjindrawan and T. S. A. Hor, J. Mol. Catal. A, 2003,
204, 267.
31 F. Novio, R. Mas-Balleste, I. Gallardo, P. Gonzalez-Duarte, A. Lledos
and N. Vila, Dalton Trans., 2005, 2742.
32 S. H. Chong, D. J. Young and T. S. A. Hor, Chem.–Asian J., 2007, 2,
1356.
33 A. Nova, P. Gonzalez-Duarte, A. Lledos, R. Mas-Balleste and G.
Ujaque, Inorg. Chim. Acta, 2006, 359, 3736.
34 A. Nova, R. Mas-Balleste´, G. Ujaque, P. Gonza´lez-Duarte and A.
Lledo´s, Chem. Commun., 2008, 3130.
Acknowledgements
We are grateful to Dr A. L. Llamas and Dr B. Dacun˜a (Unidade
de Raios X RIAIDT, Universidade de Santiago de Compostela,
Spain) for crystal structure determinations. The authors thank the
financial support from the “Ministerio de Ciencia e Innovacio´n” of
Spain (projects CTQ2004-01463, CTQ2008-06866-C02-01/BQU
and Consolider Ingenio 2010 CSD2007-00006). R. M. B. thanks
the Spanish MICINN for funding through the “Ramo´n y Cajal”
program. The use of the computational facilities of the “Centre de
Supercomputacio´ de Catalunya” is greatly appreciated.
35 R. Mas-Balleste, G. Aullon, P. A. Champkin, W. Clegg, C. Megret, P.
Gonzalez-Duarte and A. Lledos, Chem.–Eur. J., 2003, 9, 5023.
36 M. Arroyo, S. Bernes, J. L. Brianso, E. Mayoral, R. L. Richards, J. Rius
and H. Torrens, J. Organomet. Chem., 2000, 599, 170.
37 M. Capdevila, W. Clegg, P. Gonzalez-Duarte, A. Jarid and A. Lledos,
Inorg. Chem., 1996, 35, 490.
38 G. Aullon, G. Ujaque, A. Lledos and S. Alvarez, Chem.–Eur. J., 1999,
5, 1391.
39 G. Aullon, G. Ujaque, A. Lledos, S. Alvarez and P. Alemany, Inorg.
Chem., 1998, 37, 804.
40 J. Miller, Aromatic Nucleophilic Substitution, Elsevier, Amsterdam, The
Netherlands, 1968.
41 Y. J. Zheng and R. L. Ornstein, J. Am. Chem. Soc., 1997, 119, 648.
42 Z. Wu and R. Glaser, J. Am. Chem. Soc., 2004, 126, 10632.
43 D. Xu, Y. Wei, J. Wu, D. Dunaway-Mariano, H. Guo, Q. Cui and J.
Gao, J. Am. Chem. Soc., 2004, 126, 13649.
References
1 D. M. Lemal, J. Org. Chem., 2004, 69, 1.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 5980–5988 | 5987
©