10.1002/adsc.201801543
Advanced Synthesis & Catalysis
engineering approach, both enantiomers of diaryl- or
aryl(heteroaryl)methanols were chemo-enzymatically
synthesized from designed substrates with a traceless
directing group, showcasing the potential application
of such substrate-controlled stereoselective enzyme
processes. The combined use of substrate
engineering and protein engineering, was further
demonstrated to be a useful strategy in efficiently
M. F. Klingler, I. Kopper, B. Krenn, D. F. Münzer, R.
G. Ott, P. Plachota, H. J. Weber, G. Braunegg, W.
Mosler, R. Saf, Eur. J. Org. Chem. 2000, 3835-3847;
c) S. Negretti, A. R. H. Narayan, K. C. Chiou, P. M.
Kells, J. L. Stachowski, D. A. Hansen, L. M. Podust, J.
Montgomery, D. H. Sherman, J. Am. Chem. Soc. 2014,
136, 4901-4904; d) A. R. H. Narayan, G. Jiménez-
Osés, P. Liu, S. Negretti, W. Zhao, M. M. Gilbert, R.
O. Ramabhadran, Y. Yang, L. R. Furan, Z. Li, L. M.
Podust, J. Montgomery, K. N. Houk, D. H. Sherman,
Nat. Chem. 2015, 7, 653-660; e) A. T. Larsen, E. M.
May, K. Auclair, J. Am. Chem. Soc. 2011, 133, 7853-
7858; f) S. G. Bell, J. T. J. Spence, S. Liu, J. H. George,
L. Wong, Org. Biomol. Chem. 2014, 12, 2479-2488; g)
E. A. Hall, R. Sarkar, J. H. Z. Lee, S. D. Munday, S. G.
Bell, ACS Catal. 2016, 6, 6306-6317; h) T. Schubert,
W. Hummel, M. Kula, M. Müller, Eur. J. Org. Chem.
2001, 4181-4187; i) T. Schubert, W. Hummel, M.
Müller, Angew. Chem. Int. Ed. 2002, 41, 634-637. j) A.
S. de Miranda, R. C. Simon, B. Grischek, G. C. de
Paula, B. A. C. Horta, L. S. M. de Miranda, W. Kroutil,
C. O. Kappe, R. O. M. A. de Souza, ChemCatChem
2015, 7, 984-992; k) M. H. Fechter, K. Gruber, M. Avi,
W. Skranc, C. Schuster, P. Pçchlauer, K. O. Klepp, H.
Griengl, Chem. Eur. J. 2007, 13, 3369-3376; l) R.
Megyesi, E. Forrό, F. Fülöp, Tetrahedron 2018, 74,
2634-2640; m) E. Forrό, L. Kiss, J. Árva, F. Fülöp,
Molecules 2017, 22, 2211-2220; n) P. Wang, S. Tsai, T.
Chen, Biotechnol. Bioeng. 2008, 101, 460-469; o) T. S.
da Silva, S. K. Campos, A. R. M. de Oliveira, L.
Piovan, J. Mol. Catal. B-Enzym. 2016, 133, S317-
S323; p) G. Oberdorfer, K. Gruber, K. Faber, M. Hall,
Synlett. 2012, 23, 1857-1864; q) C. K. Winkler, C.
Stueckler, N. J. Mueller, D. Pressnitz, K. Faber, Eur. J.
Org. Chem. 2010, 6354-6358; r) C. Stueckler, C. K.
Winkler, M. Hall, B. Hauer, M. Bonnekessel, K.
Zangger, K. Faber, Adv. Synth. Catal. 2011, 353, 1169-
1173; s) L. L. Lairson, A. G. Watts, W. W. Wakarchuk,
S. G. Withers, Nat. Chem. Biol. 2006, 2, 724-728; t) A.
Homann, J. Seibel, Appl. Microbiol. Biotechnol. 2009,
83, 209-216.
improving
stereoselectivity
or
switching
stereopreference of enzymatic reactions.
Experimental Section
KmCR2-catalyzed reduction in analytical scale
To a solution of 10 mM ketone substrate, 20 mM glucose
and 0.2 mM NADP+ in 50 mM NaPi buffer (pH 7.0), were
added KmCR2 and glucose dehydrogenase (GDH) (0.5
mg/mL final concentration for each enzyme). The 1.5 mL
Eppendorf tube containing 1 mL of the above mixture was
shaken at 180 rpm and 30 ℃. After 24 h, the reaction
mixture was extracted with EtOAc (5 mL) and the organic
layer was subjected to GC-MS and chiral HPLC analyses.
The reaction conversion was determined using GC-MS on
Agilent 5975 equipped with HP-5MS column (30 m x
0.25 mm, 0.25 mm film). The temperature program is as
follows: 80 ℃ for 2 min, 20 ℃/min from 80 to 280 ℃,
280 ℃ for 7 min.The ee of the products was determined
using chiral HPLC, and the detailed data is shown in Table
S1. The absolute configuration of certain products was
determined by comparing the elution order in chiral HPLC
with known data.
KmCR2-catalyzed reduction in preparative scale
The preparative scale reaction was carried out with 250
mg ketone substrate, 1 g glucose, 50 mg NADP+, 35 mL
15% (w/v) cell-free extract (CFE) of KmCR2, 10 mL 15%
(w/v) CFE of GDH and 5 mL DMSO (for substrates 1o
and 1p, 0.5 mL DMSO was used) at 30 ℃and 600 rpm for
24 h. The reaction mixture was extracted with EtOAc. The
organic layer was then washed with brine and dried with
anhydrous Na2SO4, then filtered, and the filtrate was
evaporated to dryness. The product was purified by flash
chromatography (silica gel, petroleum ether: EtOAc = 4:1).
The ee of the products was determined using chiral HPLC.
The absolute configuration was determined by comparing
either the sign of the optical rotation of the major
enantiomer or the elution order in chiral HPLC with
known data.
[3] a) D. F. Münzer, P. Meinhold, M. W. Peters, S.
Feichtenhofer, H. Griengl, F. H. Arnold, A. Gliederc,
A. de Raadt, Chem. Commun. 2005, 2597-2599; b) P.
Le-Huu, D. Rekow, C. Kreger, A. Bokel, T. Heidt, S.
Schaubach, B. Claasen, S. Hölzel, W. Frey, S. Laschat,
V. B. Urlacher, Chem. Eur. J. 2018, 24, 12010- 12021;
c) M. Avi, R. M. Wiedner, H. Griengl, H. Schwab,
Chem. Eur. J. 2008, 14, 11415-11422.
Acknowledgements
We thank Prof. Qi Zhang (Fudan University), Dr. Weixin Tang
(Harvard University) and Mr. Abraham Wang (UIUC) for
critical proofreading of this manuscript. Prof. Wei Li and Prof.
Xiaojian Hu (Fudan University) are acknowledged for the help
of docking study. Financial support from Shanghai Sailing
Program (18YF1402100) is greatly appreciated.
[4] a) Y. Sui, X. Zhang, J. Wu, S. Li, J. Zhou, M. Li, W.
Fang, A. S. C. Chan, J. Wu, Chem. Eur. J. 2012, 18,
7486-7492; b) F. Schmidt, R. T. Stemmler, J. Rudolph,
C. Bolm, Chem. Soc. Rev. 2006, 35, 454-470.
References
[5] H. Li, D. Zhu, L. Hua, E. R. Biehl, Adv. Synth. Catal.
2009, 351, 583-588.
[1] a) F. H. Arnold, Angew. Chem. Int. Ed. 2018, 57,
4143-4148; b) H. Renata, Z. J. Wang, F. H. Arnold,
Angew. Chem. Int. Ed. 2015, 54, 3351-3367; c) M. T.
Reetz, J. Am. Chem. Soc. 2013, 135, 12480-12496.
[6] a) T. Touge, H. Nara, M. Fujiwhara, Y. Kayaki, T.
Ikariya, J. Am. Chem. Soc. 2016, 138, 10084-10087; b)
M. D. Truppo, D. Pollard, P. Devine, Org. Lett. 2007,
9, 335-338.
[2] a) A. de Raadt, H. Griengl, Curr. Opin. Biotechnol.
2002, 13, 537-542; b) A. de Raadt, B. Fetz, H. Griengl,
6
This article is protected by copyright. All rights reserved.