Modification of ApoA-I by Carbonyls
4. Tall, A. R., Yvan-Charvet, L., Terasaka, N., Pagler, T., and Wang, N. (2008)
Cell Metab. 7, 365–375
sequence are closely located in three-dimensional space. Our
observations suggest that positively charged amino acids that
are appropriately juxtaposed to Lys residues in apoA-I may
favor the formation of MDA-Lys adducts. Interestingly, posi-
tively charged surfaces in albumin were recently proposed to
direct site-specific modification of Lys residues by MDA (66).
HNE is perhaps the best studied product of lipid peroxida-
tion (24). It can react with imidazoles (His), thiols (Cys), or free
amino (Lys) groups of proteins to form stable Michael adducts
with hemiacetal structures (39, 67). We readily detected His
adducts after we exposed apoA-I to HNE. Quantitative analysis
by isotope dilution MS revealed that all five His residues in
apoA-I were modified in high yield (ϳ90%) when the protein
was exposed to a 50:1 molar ratio of HNE. Remarkably, this
concentration of HNE had no effect on the ability of apoA-I to
promote cholesterol efflux by the ABCA1 pathway, likely
because all five His residues are located in the central region of
the protein, which does not appear to play a major role in acti-
vating the transporter.
5. Curtiss, L. K., Valenta, D. T., Hime, N. J., and Rye, K. A. (2006) Arterioscler.
Thromb. Vasc. Biol. 26, 12–19
6. Francis, G. A., Knopp, R. H., and Oram, J. F. (1995) J. Clin. Invest. 96,
78–87
7. Burgess, J. W., Frank, P. G., Franklin, V., Liang, P., McManus, D. C., Des-
forges, M., Rassart, E., and Marcel, Y. L. (1999) Biochemistry 38,
14524–14533
8. Natarajan, P., Forte, T. M., Chu, B., Phillips, M. C., Oram, J. F., and Bielicki,
J. K. (2004) J. Biol. Chem. 279, 24044–24052
9. Vedhachalam, C., Liu, L., Nickel, M., Dhanasekaran, P., Anantharamaiah,
G. M., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. (2004) J. Biol.
Chem. 279, 49931–49939
10. Jonas, A. (1991) Biochim. Biophys. Acta 1084, 205–220
11. Sorci-Thomas, M. G., and Thomas, M. J. (2002) Trends Cardiovasc. Med.
12, 121–128
12. Glomset, J. A. (1968) J. Lipid Res. 9, 155–167
13. Barter, P. J., Nicholls, S., Rye, K. A., Anantharamaiah, G. M., Navab, M.,
and Fogelman, A. M. (2004) Circ. Res. 95, 764–772
14. Bergt, C., Pennathur, S., Fu, X., Byun, J., O’Brien, K., McDonald, T. O.,
Singh, P., Anantharamaiah, G. M., Chait, A., Brunzell, J., Geary, R. L.,
Oram, J. F., and Heinecke, J. W. (2004) Proc. Natl. Acad. Sci. U.S.A. 101,
13032–13037
Glyoxal and methylglyoxal can be generated by carbohy-
drate, lipid, and amino acid oxidation, and elevated levels of
these reactive carbonyls are thought to play important roles in
the accelerated vascular disease observed in diabetic humans
(55). However, apoA-I exposed to either carbonyl was still fully
competent to promote cholesterol efflux by the ABCA1 path-
way. These observations are consistent with the fact that only
one Arg residue, Arg215, resides in repeats 9 and 10 of apoA-I.
Importantly, this Arg was only minimally modified by glyoxal
or methylglyoxal.
15. Daugherty, A., Dunn, J. L., Rateri, D. L., and Heinecke, J. W. (1994) J. Clin.
Invest. 94, 437–444
16. Pennathur, S., Bergt, C., Shao, B., Byun, J., Kassim, S. Y., Singh, P., Green,
P. S., McDonald, T. O., Brunzell, J., Chait, A., Oram, J. F., O’brien, K.,
Geary, R. L., and Heinecke, J. W. (2004) J. Biol. Chem. 279, 42977–42983
17. Shao, B., Bergt, C., Fu, X., Green, P., Voss, J. C., Oda, M. N., Oram, J. F., and
Heinecke, J. W. (2005) J. Biol. Chem. 280, 5983–5993
18. Shao, B., Cavigiolio, G., Brot, N., Oda, M. N., and Heinecke, J. W. (2008)
Proc. Natl. Acad. Sci. U.S.A. 105, 12224–12229
19. Shao, B., Oda, M. N., Bergt, C., Fu, X., Green, P. S., Brot, N., Oram, J. F., and
Heinecke, J. W. (2006) J. Biol. Chem. 281, 9001–9004
20. Zheng, L., Nukuna, B., Brennan, M. L., Sun, M., Goormastic, M., Settle, M.,
Schmitt, D., Fu, X., Thomson, L., Fox, P. L., Ischiropoulos, H., Smith, J. D.,
Kinter, M., and Hazen, S. L. (2004) J. Clin. Invest. 114, 529–541
21. Baynes, J. W., and Thorpe, S. R. (1999) Diabetes 48, 1–9
22. Shaklai, N., Garlick, R. L., and Bunn, H. F. (1984) J. Biol. Chem. 259,
3812–3817
Glycolaldehyde is produced by carbohydrate oxidation (68)
and by activated human neutrophils, which use myeloperoxi-
dase to make it from L-serine (28, 29). However, we were unable
to detect any modified amino acid residues in apoA-I exposed
to glycolaldehyde. Our observations suggest that glycolalde-
hyde has little impact on the ability of apoA-I to promote cho-
lesterol efflux by ABCA1, but it is unclear whether the carbonyl
yields stable adducts in apoA-I under our experimental
conditions.
23. Berliner, J. A., and Heinecke, J. W. (1996) Free Radic. Biol. Med. 20,
707–727
24. Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Free Radic. Biol. Med.
11, 81–128
In conclusion, we demonstrated that of five reactive carbon-
yls studied only MDA selectively and dramatically impaired the
ability of apoA-I to transport cholesterol. The mechanism likely
involves modification of Lys residues, especially cross-linking
in repeats 9 and 10 in the C terminus. Our observations raise the
possibility that modification of apoA-I by MDA generates dys-
functional HDL that can no longer remove cholesterol from
macrophages. In future studies, it will be of interest to deter-
mine whether reactive carbonyls impair other key steps in
reverse cholesterol transport, such as lecithin:cholesterol acyl-
transferase activation, that depend on apoA-I.
25. Rosenfeld, M. E., Palinski, W., Yla¨-Herttuala, S., Butler, S., and Witztum,
J. L. (1990) Arteriosclerosis 10, 336–349
26. Stadtman, E. R., and Levine, R. L. (2003) Amino Acids 25, 207–218
27. Brownlee, M., Cerami, A., and Vlassara, H. (1988) N. Engl. J. Med. 318,
1315–1321
28. Anderson, M. M., Hazen, S. L., Hsu, F. F., and Heinecke, J. W. (1997)
J. Clin. Invest. 99, 424–432
29. Anderson, M. M., and Heinecke, J. W. (2003) Diabetes 52, 2137–2143
30. Bowry, V. W., Stanley, K. K., and Stocker, R. (1992) Proc. Natl. Acad. Sci.
U.S.A. 89, 10316–10320
31. Szapacs, M. E., Kim, H. Y., Porter, N. A., and Liebler, D. C. (2008) J.
Proteome Res. 7, 4237–4246
32. McCall, M. R., Tang, J. Y., Bielicki, J. K., and Forte, T. M. (1995) Arterio-
scler. Thromb. Vasc. Biol. 15, 1599–1606
Acknowledgment—Mass spectrometry experiments were performed
in the Mass Spectrometry Resource, Dept. of Medicine, University of
Washington.
33. Nobecourt, E., Davies, M. J., Brown, B. E., Curtiss, L. K., Bonnet, D. J.,
Charlton, F., Januszewski, A. S., Jenkins, A. J., Barter, P. J., and Rye, K. A.
(2007) Diabetologia 50, 643–653
34. Shao, B., Fu, X., McDonald, T. O., Green, P. S., Uchida, K., O’Brien, K. D.,
Oram, J. F., and Heinecke, J. W. (2005) J. Biol. Chem. 280, 36386–36396
35. Witztum, J. L., and Steinberg, D. (1991) J. Clin. Invest. 88, 1785–1792
36. Mendez, A. J., Oram, J. F., and Bierman, E. L. (1991) J. Biol. Chem. 266,
10104–10111
REFERENCES
1. Gordon, D. J., and Rifkind, B. M. (1989) N. Engl. J. Med. 321, 1311–1316
2. Movva, R., and Rader, D. J. (2008) Clin. Chem. 54, 788–800
3. Oram, J. F., and Heinecke, J. W. (2005) Physiol. Rev. 85, 1343–1372
37. Haberland, M. E., Fogelman, A. M., and Edwards, P. A. (1982) Proc. Natl.
JUNE 11, 2010•VOLUME 285•NUMBER 24
JOURNAL OF BIOLOGICAL CHEMISTRY 18483