E.D. Coy-Barrera et al. / Phytochemistry 70 (2009) 1309–1314
1313
4.3.2. Ocophyllal B [D7-3,4,5,30-tetramethoxy-80,90-dinor-40,7-epoxy-
4.5. Inhibition of (PAF)-induced aggregation of rabbit platelets assay
8,30-neolignan-70-aldehyde] (2)
film
Orangish oil; IR
m
cmꢀ1: 2968, 2751, 1683, 1477, 1133,
Anti-PAF activity was carried out according to the method re-
ported by Koch (2005). Briefly, convenient platelet rich plasma
(PRP) suspensions from rabbit’s blood were stirred at 800 rpm
and maintained at 37 °C. Samples of PRP were preincubated for
5 min at 37 °C with tested compounds in dimethyl sulfoxide
(DMSO). Aggregation was induced by addition of diluted PAF
max
1050, 920, 654; for 1H and 13C NMR (CDCl3) spectroscopic data,
see Table 1. HRMS-ESI m/z 357.1324 [M+H]+ (calcd. for C20H21O6,
357.1338).
4.3.3. Ocophyllol A [(7R, 8R, 30S, 40S, 50R)-D80-40-hydroxy-50-methoxy-
3,4-methylenedioxy-20,30,40,50-tetrahydro-20-oxo-7.30,8.50-neolignan]
(10 lL). The final PAF concentration was 1 ng/mL for PRP. In order
to eliminate effects of solvent on aggregation, the final concentra-
tion of DMSO was fixed at 0.5%, and did not affect the aggregation
measured. Inhibition of platelet aggregation versus solvent control
was calculated in percent. Half-maximal inhibition concentrations
(IC50) were determined by non-linear regression analysis using the
software GraphPad prism 5.00 (GraphPad software, San Diego, CA,
USA).
(3)
Colourless oil; ½a D25
= ꢀ27.4 (c 0.41, CHCl3); CD (c 0.03, MeOH)
film
ꢂ
[h]262 ꢀ18144, [h]330 ꢀ10425; IR
m
cmꢀ1: 3455, 2988, 1681,
max
1470, 1121, 1050; for 1H and 13C NMR (CDCl3) spectroscopic data,
see Table 2. HRMS-ESI m/z 343.1552 [M+H]+ (calcd. for C20H23O5,
343.1545).
4.3.4. Ocophyllol B [(7R, 8R, 30S, 40S, 50R)-D80-40-hydroxy-3,4,50-
tri-methoxy-20,30,40,50-tetrahydro-20-oxo-7.30,8.50-neolignan] (4)
Acknowledgments
Colourless oil; ½a D25
ꢂ
= ꢀ25.3 (c 0.37, CHCl3); CD (c 0.02, MeOH)
We thank the Chemistry Department and the División de
Investigación – Sede Bogotá (DIB) (Call 2009, Project Code No.
8003383) at Universidad Nacional de Colombia-Bogotá for financ-
ing this work, the NMR laboratory at Universidad Nacional de
Colombia-Bogotá for the NMR spectroscopy, and the Institute für
Chemie at Universität Potsdam for analytical support. E.D. Coy-Bar-
rera acknowledges the DAAD for a research stay at Universität
Potsdam.
film
[h]259 ꢀ17163, [h]335 ꢀ11234; IR
m
cmꢀ1: 3449, 2978, 1680,
max
1456, 1093; 1H and 13C NMR (CDCl3) spectroscopic data, see Table
2. HRMS-ESI m/z 359.1839 [M+H]+ (calcd. for C21H27O5, 359.1858).
4.3.5. Ocophyllol C [(7R, 8R, 30S, 40S, 50R)-D80-40-hydroxy-3,4,5,50-
tet-ramethoxy-20,30,40,50-tetrahydro-20-oxo-7.30,8.50-neolignan] (5)
Needles; mp 188–190 °C; ½a D25
ꢂ
= ꢀ29.8 (c 0.63, CHCl3); CD (c
KBr
0.04, MeOH) [h]265 ꢀ20567, [h]332 ꢀ10745; IR
m
cmꢀ1
:
max
3455, 2983, 1675, 1473, 1199, 1093, 878; for 1H and 13C NMR
(CDCl3) spectroscopic data, see Table 2. HRMS-ESI m/z 389.1945
[M+H]+ (calcd. for C22H29O6, 389.1964).
References
Aiba, C.J., Gottlieb, O.R., 1975. Synthesis of ( )-licarin B. Phytochemistry 14, 253–255.
Alegrio, L.V., Braz-Filho, R., Gottlieb, O.R., Maia, J.G.S., 1981. Lignans and neolignans
from Licaria armeniaca. Phytochemistry 20, 1963–1965.
Anh, N.H., Ripperger, H., Sung, T.V., Adam, G., 1996. Neolignans and a sesquiterpene
from Caryodaphnosis tonkinensis. Phytochemistry 42, 1167–1169.
Anh, N.H., Ripperger, H., Porzel, A., Sung, T.V., Adam, G., 1997. Neolignans from
Caryodaphnosis baviensis. Phytochemistry 46, 569–571.
Benevides, P.J.C., Sartorelli, P., Kato, M.J., 1999. Phenylpropanoids and neolignans
from Piper regnellii. Phytochemistry 52, 339–343.
Chauret, D.C., Bernard, C.B., Arnason, J.T., Durst, T., Krishnamurty, H.G., Sanchez-
Vindas, P., Moreno, N., San Roman, L., Poveda, L., 1996. Insecticidal neolignans
from Piper decurrens. J. Nat. Prod. 59, 152–155.
Coy-Barrera, E.D., Cuca-Suárez, L.E., 2008. Chemical constituents from Pleurothyrium
cinereum (van der Werff) (Lauraceae) from Colombia. Biochem. Syst. Ecol. 36,
674–677.
4.4. Preparation of (R)- and (S)-MTPA esters of 3 (3a and 3b)
(S)- and (R)-MTPA esters of 3 were individually prepared by
reacting 3 (0.9 mg) in pyridine (30
lL) with (R)- and (S)-MTPA
chlorides (1.5 L), respectively, at room temperature overnight.
l
The solvents were removed by evaporation to afford each desired
ester as a colourless oil in good yield, with these individually dis-
solved in CDCl3 and subjected to NMR spectroscopic analyses.
Assignments were made according to the reported method
(Seco et al., 2001).
De Carvalho, M.G., Yoshida, M., Gottlieb, O.R., Gottlieb, H.E., 1988. Bicyclooctanoid,
carinatone and megaphone type neolignans from Ocotea porosa.
Phytochemistry 27, 2319–2323.
Felicio, J.D., Motidome, M., Yoshida, M., Gottlieb, O.R., 1986. Further neolignans
from Ocotea aciphylla. Phytochemistry 25, 1707–1710.
Franca, N.C., Giesbrecht, A.M., Gottlieb, O.R., Magalhaes, A.F., Magalhaes, E.G., Maia,
J.G.S., 1975. Benzylisoquinolines from Ocotea species. Phytochemistry 14, 1671–
1672.
Guilhon, G.M.S.P., Conserva, L.M., Maia, J.G.S., Yoshida, M., Gottlieb, O.R., 1992.
Bicyclo[3.2.1]octanoid neolignans from Licaria brasiliensis. Phytochemistry 31,
2847–2850.
Han, G., 1995. PAF receptor antagonistic principles from chinese traditional
drugs. Progr. Nat. Sci. 5, 299–306.
Han, G.Q., Dai, P., Xu, L., Wang, S.C., Zheng, Q.T., 1992. Bicyclooctanoid neolignans
from Piper kadsura. Chin. Chem. Lett. 3, 521–524.
Himmelreich, U., Ripperger, H., Adam, G., Anh, N.H., Sung, T.V., 1996.
Eupomatenoids from Caryodaphnosis tonkinensis and their complete NMR
assignment. Magn. Reson. Chem. 33, 280–282.
4.4.1. (R)-MTPA ester of 3 (3a)
1H NMR (CDCl3, 400 MHz) d 7.06 (1H, d, J = 1.6 Hz, H-2), 6.76
(1H, dd, J = 7.5, 1.6 Hz, H-6), 6.67 (1H, d, J = 7.5 Hz, H-5), 6.59 (1H,
d, J = 1.8 Hz, H-60), 5.93 (2H, s, OCH2O), 5.82–5.87 (1H, ddt,
J = 17.1, 8.9, 6.7 Hz, H-80), 5.08–5.13 (2H, m, H-90), 5.40 (1H, dd,
J = 4.7, 1.8 Hz, H-40), 3.59 (3H, br s, OMe-700), 3.45 (3H, s, OMe-50),
3.05–3.12 (2H, mdd, J = 16.8, 6.7 Hz, H-70), 2.95 (1H, d, J = 4.7 Hz,
H-30), 2.85 (1H, d, J = 7.0 Hz, H-7), 2.36–2.43 (1H, m, H-8), 0.96
(3H, d, J = 6.8 Hz, H-9). HRMS-ESI m/z 559.1953 [M+H]+ (calcd. for
C30H30F3O7, 559.1944).
Jiang, R.W., Mak, T.C.W., Fung, K.P., 2003. Molecular structures of two bicyclo-
(3.2.1)-octanoid neolignans from Piper kadsura. J. Mol. Struct. 654, 177–182.
Khan, M.R., Gray, A.I., Waterman, P.G., 1987. Neolignans from stem bark of Ocotea
veraguensis. Phytochemistry 4, 1155–1158.
Koch, E., 2005. Inhibition of platelet activating factor (PAF)-induced aggregation of
human thrombocytes by ginkgolides: considerations on possible bleeding
complications after oral intake of Ginkgo biloba extracts. Phytomedicine 12, 10–
16.
Koltei, M., Hosford, D., Guinot, P., Esanu, A., Braquet, P., 1991a. PAF. A review of its
effects, antagonists and possible future clinical implications (Part I). Drugs 42,
9–29.
Koltei, M., Hosford, D., Guinot, P., Esanu, A., Braquet, P., 1991b. PAF. A review of its
effects, antagonists and possible future clinical implications (Part II). Drugs 42,
174–204.
4.4.2. (S)-MTPA ester of 3 (3b)
1H NMR (CDCl3, 400 MHz) d 7.07 (1H, d, J = 1.6 Hz, H-2), 6.75
(1H, dd, J = 7.5, 1.6 Hz, H-6), 6.67 (1H, d, J = 7.5 Hz, H-5), 6.52 (1H,
d, J = 1.8 Hz, H-60), 5.91 (2H, s, OCH2O), 5.78–5.86 (1H, ddt,
J = 17.0, 9.1, 6.8 Hz, H-80), 5.09–5.14 (2H, m, H-90), 5.37 (1H, dd,
J = 4.7 Hz, 1.8, H-40), 3.57 (3H, br s, OMe-700), 3.41 (3H, s, OMe-50),
3.05–3.12 (2H, mdd, J = 16.8, 6.7 Hz, H-70), 3.02 (1H, d, J = 4.7 Hz,
H-30), 2.95 (1H, d, J = 7.0 Hz, H-7), 2.33–2.40 (1H, m, H-8), 0.88
(3H, d, J = 6.8 Hz, H-9). HRMS-ESI m/z 559.1956 [M+H]+ (calcd. for
C30H30F3O7, 559.1944).