including jaspine A and 2-epi-jaspine B. Pachastrissamine
(jaspine B) 17 exhibits cytotoxic activity against various
tumor cell lines at nanomolar level.4,5 In 2009, Delgado and
co-workers reported that DHCer-mediated autophagy might
be involved in the cytotoxicity.6 Owing to its biological
importance, pachastrissamine has been the target of many
synthetic studies.7 Stereoselective construction of the trisub-
stituted tetrahydrofuran ring is a major issue in the total
synthesis.
Scheme 1. Palladium(0)-Catalyzed Cyclization of Bromoallenes
Figure 1. Structures of naturally occurring jaspines.
reaction is controlled successive nucleophilic attacks by NuA
and NuB in the desired order, as well as inhibition of the
external reaction with alkoxide; first cyclization by NuA or
NuB will produce intermediate 11 or 12, respectively, which
would be converted to the cyclic products 13/14 or 15/16,
by the intra- or intermolecular reaction. We chose pachas-
trissamine (jaspine B), which bears three contiguous stereo-
genic centers on its tetrahydrofuran core structure, for the
model study to evaluate this working hypothesis on the ring-
construction/stereoselective functionalization cascade.
We expected that palladium(0)-catalyzed cyclization of
bromoallenes 19 bearing hydroxy and benzamide groups8
as internal nucleophiles could regio- and stereoselectively
provide appropriately functionalized tetrahydrofuran 18 for
synthesis of pachastrissamine 17 (Scheme 3). The bicyclic
structure of 18 including the exo-olefin would be useful for
stereoselective construction of a C-2 stereogenic center as
well as carbon homologation. Herein, we describe an
efficient, short, total synthesis of pachastrissamine (jaspine
B) utilizing cascade cyclization of a bromoallene of type 19,
which has two internal nucleophiles at both ends of a
branched alkyl group.
Scheme 2. Construction of Bicyclic Structures by
Palladium(0)-Catalyzed Cascade Cyclization of Bromoallenes 10
(6) Canals, D.; Mormeneo, D.; Fabria`s, G.; Llebaria, A.; Casas, J.;
Delgado, A. Bioorg. Med. Chem. 2009, 17, 235–241.
(7) For previous syntheses, see: (a) Sudhakar, N.; Kumar, A. R.;
Prabhakar, A.; Jagadeesh, B.; Rao, B. V. Tetrahedron Lett. 2005, 46, 325–
327. (b) Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. Org. Lett. 2005,
7, 875–876. (c) van den Berg, R.; Boltje, T.; Verhagen, C.; Litjens, R.;
Vander Marel, G.; Overkleeft, H. J. Org. Chem. 2006, 71, 836–839. (d)
Du, Y.; Liu, J.; Linhardt, R. J. J. Org. Chem. 2006, 71, 1251–1253. (e)
Liu, J.; Du, Y.; Dong, X.; Meng, S.; Xiao, J.; Cheng, L. Carbohydr. Res.
2006, 341, 2653–2657. (f) Ribes, C.; Falomir, E.; Carda, M.; Marco, J. A.
Tetrahedron 2006, 62, 5421–5425. (g) Lee, T.; Lee, S.; Kwak, Y. S.; Kim,
D.; Kim, S. Org. Lett. 2007, 9, 429–432. (h) Reddy, L. V. R.; Reddy, P. V.;
Shaw, A. K. Tetrahedron: Asymmetry 2007, 18, 542–546. (i) Ramana, C. V.;
Giri, A. G.; Suryawanshi, S. B.; Gonnade, R. G. Tetrahedron Lett. 2007,
48, 265–268. (j) Prasad, K. R.; Chandrakumar, A. J. Org. Chem. 2007, 72,
6312–6315. (k) Abraham, E.; Candela-Lena, J. I.; Davies, S. G.; Georgiou,
M.; Nicholson, R. L.; Roberts, P. M.; Russell, A. J.; Snchez-Fernndez, E. M.;
Smith, A. D.; Thomson, J. E. Tetrahedron: Asymmetry 2007, 18, 2510–
2513. (l) Yakura, T.; Sato, S.; Yoshimoto, Y. Chem. Pharm. Bull. 2007,
55, 1284–1286. (m) Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies,
S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell,
A. J.; Snchez-Fernndez, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E.
Org. Biomol. Chem. 2008, 6, 1665–1673. (n) Passiniemi, M.; Koskinen,
A. M. P. Tetrahedron Lett. 2008, 49, 980–983. (o) Venkatesan, K.;
Srinivasan, K. V. Tetrahedron: Asymmetry 2008, 19, 209–215. (p) Enders,
D.; Terteryan, V.; Palecek, J. Synthesis 2008, 2278–2282. (q) Ichikawa,
Y.; Matsunaga, K.; Masuda, T.; Kotsuki, H.; Nakano, K. Tetrahedron 2008,
64, 11313–11318. For a review, see: (r) Abraham, E.; Davies, S. G.; Roberts,
P. M.; Russell, A. J.; Thomson, J. E. Tetrahedron: Asymmetry 2008, 19,
1027–1047.
The structure of pachastrissamine 17 (Figure 1), an
anhydrophytosphingosine derivative isolated from a marine
sponge Pachastrissa sp., was reported by Higa and co-
workers in 2002.4 Shortly thereafter, Debitus and co-workers
isolated the same compound from a different marine sponge,
Jaspis sp., and named jaspine B.5 Other structurally related
analogues have also been isolated from the same species,
(4) Kuroda, I.; Musman, M.; Ohtani, I.; Ichiba, T.; Tanaka, J.; Garcia-
Gravalos, D.; Higa, T. J. Nat. Prod. 2002, 65, 1505–1506.
(5) Ledroit, V.; Debitus, C.; Lavaud, C.; Massoit, G. Tetrahedron Lett.
2003, 44, 225–228.
(8) (a) Cook, G. R.; Shanker, P. S. Tetrahedron Lett. 1998, 39, 3405–
3408. (b) Cook, G. R.; Shanker, P. S. Tetrahedron Lett. 1998, 39, 4991–
4994. (c) Lee, K.-Y.; Kim, Y.-H.; Park, M.-S.; Oh, C.-Y.; Ham, W.-H. J.
Org. Chem. 1999, 64, 9450–9458.
Org. Lett., Vol. 11, No. 19, 2009
4479