3 For recent reviews on organocatalytic asymmetric conjugate
additions, see: (a) D. Almasi, D. A. Alonso and C. Najera,
Tetrahedron: Asymmetry, 2007, 18, 299; (b) S. B. Tsogoeva,
Eur. J. Org. Chem., 2007, 1701.
4 For selected examples of organocatalytic asymmetric Michael
additions of stabilized carbanions, see: Nitroalkanes: (a) H. Li,
Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc., 2004, 126,
9906; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and
Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119; (c) J. Ye,
D. J. Dixon and P. S. Hynes, Chem. Commun., 2005, 4481;
Ketoesters: (d) A. Berkessel, F. Cleemann and S. Mukherjee,
Angew. Chem., Int. Ed., 2006, 45, 947; Diketones: (e) J. Wang,
H. Li, W.-H. Duan, L. Zu and W. Wang, Org. Lett., 2005, 7, 4713;
(f) J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem.
Soc., 2008, 130, 14416; Nitroesters: (g) I. T. Raheem,
S. N. Goodman and E. N. Jacobsen, J. Am. Chem. Soc., 2004,
126, 706; Dinitriles: (h) Y. Hoashi, T. Okino and Y. Takemoto,
Angew. Chem., Int. Ed., 2005, 44, 4032; Indoles: (i) D.-P. Li,
Y.-C. Guo, Y. Ding and W.-J. Xiao, Chem. Commun., 2006, 799;
(j) L. Li, E. G. Klauber and D. Seidel, J. Am. Chem. Soc., 2008,
130, 16464.
Scheme 1 The transformation of 4g into chiral monofluromethyl
compound 6.
Nowadays, the incorporation of fluorine atom(s) into bio-
active molecules to improve their physiochemical and
biological properties has become general practice in drug
design.12 Motivated by the broad utilities of chiral monofluoro-
methyl compounds in organic synthesis and medicinal
chemistry, and the lack of catalytic asymmetric methods for
their preparation, we have developed a novel organocatalytic
asymmetric Michael addition approach to these structures that
offers high enantiomeric excesses. This transformation is
efficiently carried out in the presence of a simple chiral
diarylprolinol TBS ether catalyst under mild reaction
conditions. The significance of the methodology is highlighted
by the fact that the iminium catalysis strategy employed here for
enals is different from the chiral phase transfer protocol developed
by Shibata co-workers, which can only be applied to enones.6c
Furthermore, the more synthetically-versatile aldehyde adducts
have more broad synthetic applications, such as oxidation to
carboxylic acids, reductive aminations, aldol reactions, etc., than
ketones, that will constitute our future endeavours.
5 For a review of selective fluoroalkylations with fluorinated
sulfones, see: G. K. S. Prakash and J. Hu, Acc. Chem. Res.,
2007, 40, 921.
6 There are only three examples of catalytic asymmetric methods
involving the use of FBSM as a nucleophile, see: (a) T. Fukuzumi,
N. Shibata, M. Sugiura, H. Yasui, S. Nakamura and T. Toru,
Angew. Chem., Int. Ed., 2006, 45, 4973; (b) S. Mizuta, N. Shibata,
Y. Goto, T. Furukawa, S. Nakamura and T. Toru, J. Am. Chem.
Soc., 2007, 129, 6394; (c) T. Fukuzumi, N. Shibata, S. Mizuta,
S. Nakamura, T. Toru and M. Shiro, Angew. Chem., Int. Ed., 2008,
47, 8051.
7 For selected examples, see: (a) R. B. Silverman and
S. M. Nanavati, J. Med. Chem., 1990, 33, 931;
(b) G. L. Grunewald, M. R. Seim, R. C. Regier, J. L. Martin,
L. Gee, N. Drinkwater and K. R. Criscione, J. Med. Chem.,
2006, 49, 5424; (c) E. E. Parent, K. E. Carlson and
J. A. Katzenellenbogen, J. Org. Chem., 2007, 72, 5546;
(d) F. G. Simeon, A. K. S. Brown, S. Zoghbi, V. M. Patterson,
R. B. Innis and V. W. Pike, J. Med. Chem., 2007, 50, 3256.
8 For examples of the use of chiral precursors and auxiliaries for the
asymmetric addition of FBSM, see: (a) Y. Li, C. Ni, J. Liu,
L. Zhang, J. Zheng, L. Zhu and J. Hu, Org. Lett., 2006, 8, 1693;
(b) G. K. S. Prakash, S. Chacko, S. Alconcel, T. Stewart,
T. Mathew and G. A. Olah, Angew. Chem., Int. Ed., 2007, 46, 4933.
9 (a) L. Hao, S.-L. Zhang, G.-Y. Chen, X.-X. Song and W. Wang,
Chem. Commun., 2009, 2136; (b) X. Han, J. Luo, C. Liu and
X.-Y. Lu, Chem. Commun., 2009, 2044.
Financial support for this work provided by the NSF
(CHE-0704015) is gratefully acknowledged. Thanks are
expressed to Dr Elieen N. Duesler for performing the X-ray
crystallographic analysis. The Bruker X8 X-ray diffractometer
was purchased via an NSF CRIF:MU award to the University
of New Mexico, CHE-0443580.
Notes and references
1 (a) P. Perlmutter, Conjugate Addition Reactions in
Organic Synthesis, Pergamon, Oxford, 1992; (b) M. Sibi and
S. Manyem, Tetrahedron, 2001, 56, 8033; (c) O. M. Berner,
L. Tedeschi and D. Enders, Eur. J. Org. Chem., 2002, 1877;
(d) J. Christoffers and A. Baro, Angew. Chem., Int. Ed., 2003, 42,
1688; (e) R. Ballini, G. Bosica, D. Fiorini, A. Palmieri and
M. Petrini, Chem. Rev., 2007, 107, 933.
10 For a review of diaryl prolinol ether catalysis, see: C. Palomo and
A. Mielgo, Angew. Chem., Int. Ed., 2006, 45, 7876.
11 The absolute stereoconfiguration of Michael products was
determined by single-crystal X-ray structural analysis, see the
ESI for detailsw.
2 (a) A. Berkessel and H. Groger, Asymmetric Organocatalysis: From
¨
Biomimetic Concepts to Applications in Asymmetric Synthesis,
Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany,
2005; (b) Special issue on asymmetric organocatalysis: Chem. Rev.,
2004, 37, 5413.
12 For recent reviews on the applications of fluorinated compounds in
medicinal chemistry and drug discovery, see: (a) C. Isanbor and
D. O’Hagan, J. Fluorine Chem., 2006, 127, 303; (b) K. Muller,
C. Faeh and F. Diederich, Science, 2007, 317, 1881.
ꢀc
This journal is The Royal Society of Chemistry 2009
4888 | Chem. Commun., 2009, 4886–4888