the 2,6-di(thiomethyl)pyridine site is provided by the sig-
nificant downfield shifts of the thiomethylene protons (1.2 ppm)
and carbons (11.2 ppm) in the 1H NMR and 13C NMR spectra,
respectively. The absence of the 3,5-pyridine protons peak at d
6.87 further supports the complexation hypothesis. Moreover,
the presence of the characteristic molecular peak at m/z 1074
([3PdCl]+) in the MALDI-TOF spectrum of 6 clearly indicates
the formation of a 1:1 complex between PdII and 3.
Notes and references
1 S. Serroni, G. Denti, S. Campagna, A. Juris, M. Ciano and V. Balzani,
Angew. Chem., Int. Ed. Engl., 1992, 31, 1493; E. C. Constable, Chem.
Commun., 1997, 1073.
2 W. Knapen, A. W. van der Made, J. C. de Wilde, P. W. N. M. van
Leeuwen, P. Wijkens, D. M. Grove and G. van Koten, Nature, 1994,
372, 659; A. Miedaner, C. J. Curtis, R. M. Barkley and L. DuBois,
Inorg. Chem., 1994, 33, 5482.
3 M. Albrecht, R. A. Gossage, A. L. Spek and G. van Koten, Chem.
Commun., 1998, 1003.
The complexation of PdII with the dendron 4 did not proceed
smoothly under the same experimental conditions. The 1H
NMR spectrum of a CDCl3 solution of complex 7, isolated as its
chloride salt, suggests the presence of an undesired product. A
possible explanation for its formation is the competition of
chloride ion as a nucleophile with other donor centres in the
dendritic structure, namely the sulfur and nitrogen atoms of the
2,6-di(thiomethyl)pyridine sub-unit.11 However, 7 was success-
fully purified by conversion into its yellow ClO42 salt, the 1H
NMR spectrum of which exhibits a pattern similar to those
observed for 6, furthermore the MALDI-TOF mass spectrum
shows a parent ion at m/z 1792 coorresponding to [4PdCl]+.
Extension of this finding to the reaction of 5 with PdII allowed
us to obtain metallodendron 8. As in the foregoing spectra, the
resonances associated with the 2,6-di(thiomethyl)pyridine frag-
ment are affected by complexation and lie at lower field than
those of the uncoordinated domain. In particular, the CH2S
singlet, which is found at d 4.21 in a uncoordinated ligand, shifts
to d 5.26 (br s) in a coordinated unit. Once again, the MALDI-
TOF mass spectrum displaying the characteristic molecular
peak at m/z 3225 ([5PdCl]+) provides convincing evidence for
the formulation of product 8. Analytical data, 1H, 13C NMR and
MALDI-TOF spectra of all species prepared are fully consistent
with the proposed structures. In particular, for complex 8 the
synthetic approach (1:1 Pd/5 molar ratio and the ensuing 78%
yield) and the presence of one single signal for the carboxylate
ethyl protons (X = CO2Et) strongly support the formulation of
Fig. 1.
These results indicate that the presence of the 2,6-di(thiome-
thyl)pyridine sub-unit in dendritic wedges is particularly
attractive for developing dendrimers with specifically localised
metal centres. The physical properties of the metallodendrons
6–8 are now under extensive investigations. Of particular
interest are the selectivity towards other transition metals and
the influence of dendrimer framework on the metal-binding
process.
We thank the MURST (Ministero per l’ Università e la
Ricerca Scientifica e Tecnologica) for financial support, Dr R.
Seraglia (C.N.R. of Padova) for mass spectra, and Mrs L.
Gemelli for technical assistance.
4 G. R. Newkome, F. Cardullo, E. C. Constable, C. N. Moorefield and
A. M. W. Cargill Thompson, J. Chem. Soc., Chem. Commun., 1993,
925; F. Moulines, L. Djakovitch, R. Boese, B. Gloaguen, W. Thiel, J.-L.
Fillaut, M.-H. Delville and D. Astruc, Angew. Chem., Int. Ed. Engl.,
1993, 32, 1075; B. Alonso, I. Cuadrado, M. Moran and J. Losada,
J. Chem. Soc., Chem. Commun., 1994, 2575; Y. H. Liao and J. R. Moss,
Organometallics, 1995, 14, 2130; D. Seyferth, T. Kugita, A. L.
Rheingold and G. P. A. Yap, Organometallics, 1995, 14, 5362; R.
Deschenaux, E. Serrano and A.-M. Levelut, Chem. Commun., 1997,
1577; C. F. Shu and H. M. Shen, J. Mater. Chem., 1997, 7, 47; M.
Bardajì, M. Kustos, A. M. Caminade, J. P. Majoral and B. Chaudret,
Organometallics, 1997, 16, 403; J. L. Hoare, K. Lorenz, N. J. Hovestad,
W. J. J. Smeets, A. L. Spek, A. J. Canty, H. Frey and G. van Koten,
Organometallics, 1997, 16, 4167.
5 W. T. S. Huck, F. C. J. M. van Veggel and D. N. Reinhoudt, Angew.
Chem., Int. Ed. Engl., 1996, 35, 1213; S. Achar, J. J. Vittal and R. J.
Puddephatt, Organometallics, 1996, 15, 43; S. Serroni, A. Juris, M.
Venturi, S. Campagna, I. R. Resino, G. Denti, A. Credi and V. Balzani,
J. Mater. Chem., 1997, 7, 1227.
6 G. R. Newkome, R. Guther, C. N. Moorefield, F. Cardullo, L.
Echegoyen, E. Perez-Cordero and H. Luftmann, Angew. Chem., Int. Ed.
Engl., 1995, 34, 2023; P. J. Dandliker, F. Diederich, J.-P. Gisselbrecht,
A. Louati and M. Gross, Angew. Chem., Int. Ed. Engl., 1995, 34, 2725;
P. Bhyrappa, J. K. Young, J. Moore and K. S. Suslick, J. Am. Chem.
Soc., 1996, 118, 5708; M. Kimura, K. Nakada, Y. Yamaguchi, K.
Hanabusa, H. Shirai and N. Kobayashi, Chem. Commun., 1997, 1215; J.
Issberner, F. Vögtle, L. De Cola and V. Balzani., Chem. Eur. J., 1997,
3, 706.
7 U. Stebani, G. Lattermann, M. Wittemberg, and J. H. Wendorff, Angew.
Chem., Int. Ed. Engl., 1996, 35, 1858; G. R. Newkome, J. Grob, C. N.
Moorefield and B. D. Woosley, Chem. Commun., 1997, 515.
8 L. Canovese, G. Chessa, G. Marangoni, B. Pitteri, F. Visentin and P.
Uguagliati, Inorg. Chim. Acta, 1991, 186, 79.
9 G. Chessa and A. Scrivanti, J. Chem. Soc., Perkin Trans. 1, 1996,
307.
10 R. N. Young, J. Y. Gauthier and W. Coombs, Tetrahedron Lett., 1984,
25, 1753.
11 M. L. Tobe, Comprehensive Coordination Chemistry, ed. G. Wilkinson,
R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 1,
p. 282.
Communication 9/00783K
960
Chem. Commun., 1999, 959–960