9028 Inorganic Chemistry, Vol. 48, No. 18, 2009
Lu et al.
Scheme 1
bovine serum albumin or activation of soluble guanylate
cyclase.6 Interestingly, DNICs not only play a key role in the
storage and transport of NO but also regulate the Fe uptake
and cellular iron homeostasis by the efflux of Fe in the form
of DNIC-GSH.1
frataxin, which donates Fe to IscU facilitated by cysteine and
IscS.10 The donation of Fe to IscU facilitated by cysteine and
IscSimplicated that an [Fe-S-SR] complex was produced in
the interaction of IscA, IscS, and cysteine and delivered to
IscU for further assembling. A dual role of IscA was found in
which it acts as a scaffold protein by anchoring one [2Fe-2S]
cluster in the interface of two IscA monomers.10d
A requirement of the complex assembly machinery for the
maturation of [Fe-S] proteins was identified, but the assem-
bling mechanism remained for further investigation.7 It is
proposed that the biosynthesis of [Fe-S] clusters includes
three steps: (i) mobilizing iron and sulfur atoms from their
storage sources in nontoxic forms, (ii) assembling them into
an [Fe-S] core, and (iii) inserting the assembled [Fe-S] core
into apoprotein.7-10 Inorganic sulfur atoms (S0) are gener-
ated from cysteine catalyzed by cysteine desulfurase (carried
by cysteine desulfurase in the form of persulfide (RS-SH))
and inserted to form an [Fe-S] core via reductive cleavage of
the S-S bond by NADH mediated by Yah1 and Arh1.7,8 It is
known that persulfide and trisulfide (RS-S-SR0) were
observed on IscU upon incubation with IscS and cysteine,
that is, sulfur atom(s) anchored on IscU in the form of
persulfide or trisulfide is proposed to incorporate with Fe
to assemble [Fe-S] clusters.9 The Fe source for the biosynth-
esis of [Fe-S] clusters was proposed to derive from IscA and
In biological systems, NO-modified [2Fe-2S]/[4Fe-4S]
clusters in mitochondrial aconitase, HiPIP, and SoxR, that
is, DNICs and anionic Roussin’s red esters (RREs), were
automatically transformed into the original [2Fe-2S]/[4Fe-
4S] clusters in aerobically growing E. coli with no new protein
synthesis.11,12 Also, DNICs can be directly transformed back to
the ferredoxin [2Fe-2S] cluster by cysteine desulfurase (IscS)
and L-cysteine in vitro with no need of the addition of iron or
any other protein components in the repair of NO-modified
ferredoxin [2Fe-2S] clusters.13
It is known that iron sulfur clusters were synthesized via the
self-assembly pathway.14 Recently, the transformation of
[(NO)2FeS5]- into [S5Fe(μ-S)2FeS5]2- in the presence of the
NO-acceptor reagent [(C4H8O)Fe(S,S-C6H4)2]- by photoly-
sis was reported.15a Conversion of DNICs into [4Fe-4S]
clusters in the presence of [Fe(SR)4]- and S8 was also demon-
strated in a biomimetic model study.15b Also, degradation of
[2Fe-2S] clusters ligated by aromatic thiolates via nitrosyla-
tion was found to generate DNICs with elimination of the
elemental sulfur atoms.16 In this report, we attempt to adopt
::
(6) (a) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mulsch, A.
J. Biol. Chem. 1995, 270, 29244–29249. (b) Mulsch, A.; Mordvintcev, P.; Vanin,
A. F.; Busse, R. FEBS Lett. 1991, 294, 252–256. (c) Giannone, G.; Takeda, K.;
Kleschyov, A. L. J. Physiol. 2000, 529, 735–745. (d) Severina, I. S.; Bussygina,
G. O.; Pyatakova, V. N.; Malenkova, V. I.; Vanin, A. F. Nitric Oxide 2003, 8, 155–
163. (e) Vasil'eva, S. V.; Osipov, A. N.; Sanina, N. A.; Aldoshin, S. M. Dokl.
Biochem. Biophys. 2007, 414, 102–105. (f) Kleschyov, A. L.; Strand, S.; Schmitt,
S.; Gottfried, D.; Skatchkov, M.; Sjakste, N.; Daiber, A.; Umansky, V.; Munzel, T.
Free Radical Biol. Med. 2006, 40, 1340–1348.
(7) Lill, R.; Muhlenhoff, U. Annu. Rev. Biochem. 2008, 77, 669–700.
(8) (a) Zheng, L.; White, R. H.; Cash, V. L.; Jack, R. F.; Dean, D. R. Proc.
Natl. Acad. Sci. 1993, 90, 2754–2758. (b) Agar, J. N.; Zheng, L.; Cash, V. L.;
Dean, D. R.; Johnson, M. K. J. Am. Chem. Soc. 2000, 122, 2136–2137. (c) Agar,
J. N.; Krebs, C.; Frazzon, J.; Huynh, B. H.; Dean, D. R.; Johnson, M. K.
Biochemistry 2000, 39, 7856–7862.
(9) (a) Smith, A. D.; Frazzon, J.; Dean, D. R.; Johnson, M. K. FEBS Lett.
2005, 579, 5236–5240. (b) Smith, A. D.; Agar, J. N.; Johnson, K. A.; Frazzon, J.;
Amster, I. J.; Dean, D. R.; Johnson, M. K. J. Am. Chem. Soc. 2001, 123, 11103–
11104.
(10) (a) Yoon, T.; Cowan, J. A. J. Am. Chem. Soc. 2003, 125, 6078–6084.
(b) Ding, H.; Clark, R. J.; Ding, B. J. Biol. Chem. 2004, 279, 37499–37504. (c)
Ding, H.; Clark, R. J. Biochem. J. 2004, 379, 433–440. (d) Morimoto, K.;
Yamashita, E.; Kondou, Y.; Lee, S. J.; Arisaka, F.; Tsukihara, T.; Nakai, M. J.
Mol. Biol. 2006, 360, 117–132.
(11) (a) Kennedy, M. C.; Anthonline, E. W.; Beinert, H. J. Biol. Chem.
1997, 272, 20340–20347. (b) Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc.
1999, 121, 4093–4100. (c) Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A
2000, 97, 5146–5150. (d) Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc.
2007, 129, 12626–12627.
(12) Bouton, C.; Chauveau, M.-J.; Lazereg, S.; Drapier, J.-C. J. Biol.
Chem. 2002, 277, 31220–31227.
(13) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868–
12873.
(14) (a) Rao, P. V.; Holm, R. H. Chem. Rev. 2004, 104, 527–559. (b) Ohki,
Y.; Sunada, Y.; Honada, M.; Katada, M.; Tatsumi, K. J. Am. Chem. Soc. 2003,
125, 4052–4053. (c) Ohki, Y.; Ikagawa, Y.; Tatsumi, K. J. Am. Chem. Soc. 2007,
129, 10457–10465.
(15) (a) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.;
Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F.
Inorg. Chem. 2004, 43, 5159–5167. (b) Tsou, C.-C.; Lin, Z.-S.; Lu, T.-T.; Liaw,
W.-F. J. Am. Chem. Soc. 2008, 130, 17154–17160.
(16) Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am.
Chem. Soc. 2008, 130, 15602–15610.