10.1002/ejoc.202100404
European Journal of Organic Chemistry
COMMUNICATION
Appl. Chem. 2019, 91, 95-102; e) J. M. Lipshultz, G. Li, A. T. Radosevich,
J. Am. Chem. Soc. 2021, 143, 1699-1721.
B adds on the vinylphosphonium salt C to generate ylide D. This
is the enantiodetermining step of this transformation. Following
the intramolecular Wittig reaction, chiral N-heterocycles 3 or 8 are
delivered and the phosphine oxide is reduced in situ by the
phenylsilane to regenerate the trivalent phosphine catalyst. To
facilitate this reduction, both the addition of catalytic amounts of
phosphate and the use of cyclic phosphines have a positive
impact on the reaction outcome. Indeed, chiral bicyclic
phosphines often represent the ideal balance between
nucleophilicity and facility of performing the PIII/PV redox cycling,
while having a congested chiral structure that can achieve good
stereoselectivity.[8b] The direct formation of N-aryl-pyrroles 4a-c
can be explained by the direct addition of the nitrogen atom of 1
to DAAD substrate 2, following a cyclization/dehydration process,
without the use of phosphine.[17a-c,18] Indeed, with more
nucleophilic substrate 1c and using “Condition B” without
phosphine, pyrrole 4c was isolated. Fortunately, with N-Cbz
substrate 1e, this non-desired reactivity was suppressed.
[2]
a) C. J. O'Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R.
Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48,
6836-6839; b) C. J. O'Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J.
Doonan, Chem. Eur. J. 2013, 19, 5854-5858; c) E. E. Coyle, B. J. Doonan,
A. J. Holohan, K. A. Walsh, F. Lavigne, E. H. Krenske, C. J. O'Brien,
Angew. Chem. Int. Ed. 2014, 53, 12907-12911; d) L. Wang, Y. Wang, M.
Chen, M.-W. Ding, Adv. Synth. Catal. 2014, 356, 1098-1104; e) M.-L.
Schirmer, S. Adomeit, T. Werner, Org. Lett. 2015, 17, 3078-3081; f) L.
Wang, Y.-B. Xie, N.-Y. Huang, J.-Y. Yan, W.-M. Hu, M.-G. Liu, M.-W.
Ding, ACS Catalysis 2016, 6, 4010-4016; g) C.-J. Lee, T.-H. Chang, J.-
K. Yu, G. Madhusudhan Reddy, M.-Y. Hsiao, W. Lin, Org. Lett. 2016, 18,
3758-3761; h) L. Longwitz, A. Spannenberg, T. Werner, ACS Catalysis
2019, 9, 9237-9244.
[3]
[4]
a) H. A. van Kalkeren, J. J. Bruins, F. P. J. T. Rutjes, F. L. van Delft, Adv.
Synth. Catal. 2012, 354, 1417-1421; b) A. D. Kosal, E. E. Wilson, B. L.
Ashfeld, Angew. Chem. Int. Ed. 2012, 51, 12036-12040 ; c) D. C. Lenstra,
F. P. J. T. Rutjes, J. Mecinovic, Chem. Commun. 2014, 50, 5763-5766;
d) D. C. Lenstra, P. E. Lenting, J. Mecinović, Green Chem. 2018, 20,
4418-4422.
a) J. A. Buonomo, C. C. Aldrich, Angew. Chem. Int. Ed. 2015, 54, 13041-
13044; b) D. Hirose, M. Gazvoda, J. Kosmrlj, T. Taniguchi, Org. Lett.
2016, 18, 4036-4039; For a redox-neutral strategy, see : c) R. H. Beddoe,
K. G. Andrews, V. Magné, J. D. Cuthbertson, J. Saska, A. L. Shannon-
Little, S. E. Shanahan, H. F. Sneddon, R. M. Denton, Science 2019, 365,
910-914.
[5]
[6]
a) H. A. van Kalkeren, S. H. A. M. Leenders, C. R. A. Hommersom, F. P.
J. T. Rutjes, F. L. van Delft, Chem. Eur. J. 2011, 17, 11290-11295; b) L.
Longwitz, S. Jopp, T. Werner, J. Org. Chem. 2019, 84, 7863-7870.
a) T. V. Nykaza, T. S. Harrison, A. Ghosh, R. A. Putnik, A. T. Radosevich,
J. Am. Chem. Soc. 2017, 139, 6839-6842; b) T. V. Nykaza, A. Ramirez,
T. S. Harrison, M. R. Luzung, A. T. Radosevich, J. Am. Chem. Soc. 2018,
140, 3103-3113.
[7]
a) J. R. Harris, M. T. Haynes, II, A. M. Thomas, K. A. Woerpel, J. Org.
Chem. 2010, 75, 5083-5091; b) W. Zhao, P. K. Yan, A. T. Radosevich,
J. Am. Chem. Soc. 2015, 137, 616-619; c) K. Fourmy, A. Voituriez, Org.
Lett. 2015, 17, 1537-1540; d) T. V. Nykaza, J. C. Cooper, G. Li, N.
Mahieu, A. Ramirez, M. R. Luzung, A. T. Radosevich, J. Am. Chem. Soc.
2018, 140, 15200-15205; e) A. Ghosh, M. Lecomte, S. H. Kim-Lee, A. T.
Radosevich, Angew. Chem. Int. Ed. 2019, 58, 2864-2869; f) G. Li, T. V.
Nykaza, J. C. Cooper, A. Ramirez, M. R. Luzung, A. T. Radosevich, J.
Am. Chem. Soc. 2020, 142, 6786-6799; g) L. Longwitz, T. Werner,
Angew. Chem. Int. Ed. 2020, 59, 2760-2763.
Scheme 3. Proposed mechanism for the formation of 3 and 8.
In conclusion, we have demonstrated that the two catalytic
approaches described in this study provided a facile and efficient
route for the isolation of substitued dihydropyrroles and
tetrahydropyridines. The use of enantiopure bicyclic HypPhos
phosphines furnished five- and six-membered nitrogen
heterocyles in moderate yields and promising enantioselectivities.
Further studies will be oriented toward the development of other
transformations via P(III)/P(V) redox cycling and the development
of specifically designed chiral phosphines.
[8]
[9]
a) H. A. van Kalkeren, C. te Grotenhuis, F. S. Haasjes, C. A. Hommersom,
F. P. J. T. Rutjes, F. L. van Delft, Eur. J. Org. Chem. 2013, 7059-7066;
b) K. Zhang, L. C. Cai, Z. Y. Yang, K. N. Houk, O. Kwon, Chem. Sci.
2018, 9, 1867-1872.
a) N. Saleh, A. Voituriez, J. Org. Chem. 2016, 81, 4371-4377; b) N. Saleh,
F. Blanchard, A. Voituriez, Adv. Synth. Catal. 2017, 359, 2304-2315; c)
X. Han, N. Saleh, P. Retailleau, A. Voituriez, Org. Lett. 2018, 20, 4584-
4588; d) C. Lorton, A. Voituriez, J. Org. Chem. 2018, 83, 5801-5806.
[10] a) T. Werner, M. Hoffmann, S. Deshmukh, Eur. J. Org. Chem. 2014,
6630-6633. For further application of this reaction in total synthesis, see :
b) V. M. Schmiedel, Y. J. Hong, D. Lentz, D. J. Tantillo, M. Christmann,
Angew. Chem. Int. Ed. 2018, 57, 2419-2422.
Acknowledgements
The authors acknowledge the support of the Centre National de
la Recherche Scientifique (CNRS). C.L. thanks MESRI (Paris-
Saclay University) for a Ph.D. fellowship.
[11] L. Cai, K. Zhang, S. Chen, R. J. Lepage, K. N. Houk, E. H. Krenske, O.
Kwon, J. Am. Chem. Soc. 2019, 141, 9537-9542.
[12] C. Lorton, T. Castanheiro, A. Voituriez, J. Am. Chem. Soc. 2019, 141,
10142-10147.
[13] For PPh3-mediated processes, see : a) L. A. Evans, K. E. Griffiths, H.
Guthmann, P. Murphy, Tetrahedron Lett. 2002, 43, 299–301; b) M.
Anary-Abbasinejad, E. Poorhassan, A. Hassanabadi, Synlett 2009,
1929-1932; c) H. Anaraki-Ardakani, A. Hassanabadi, A. Fazilnia, A.
Tabarzad, T. Heidari-Rakati, J. Chem. Res. 2014, 38, 9-11; d) I. Yavari,
A. Ramazani, A. A. Esmaili, J. Chem. Res. 1997, 208–209.
Keywords: Phosphine • organocatalysis • asymmetric • dihydro-
1H-pyrrole • tetrahydropyridine
[1]
a) A. Voituriez, N. Saleh, Tetrahedron Lett. 2016, 57, 4443-4451; b) H.
C. Guo, Y. C. Fan, Z. H. Sun, Y. Wu, O. Kwon, Chem. Rev. 2018, 118,
10049-10293; c) R. H. Beddoe, H. F. Sneddon, R. M. Denton, Org.
Biomol. Chem. 2018, 16, 7774-7781; d) L. Longwitz, T. Werner, Pure
[14] a) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57,
10257–10274; b) P. Martins, J. Jesus, S. Santos, L. R. Raposo, C.
Roma-Rodrigues, P. V. Baptista, A. R. Fernandes, Molecules 2015, 20,
4
This article is protected by copyright. All rights reserved.