D. Kashinath et al. / Tetrahedron Letters 50 (2009) 5379–5381
5381
10. (a) Sabot, C.; Kumar, K. A.; Antheaume, C.; Mioskowski, C. J. Org. Chem. 2007, 72,
5001–5004; (b) Sabot, C.; Kumar, K. A.; Meunier, S.; Mioskowski, C. Tetrahedron
Lett. 2007, 78, 3863–3866; (c) Ghobril, C.; Sabot, C.; Mioskowski, C.; Baati, R.
Eur. J. Org. Chem. 2008, 4104–4108.
11. Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693–4695.
12. Hamashima, Y.; Ishikura, K.; Kubota, T.; Minami, K. US Patent 4,578,378, 1986.
with phenylacetylene affording compound 4, in a medium but non-
optimized yield (Scheme 3).15
In conclusion, direct azidation of heterocyclic b-ketoesters using
TsN3 and organic bases was studied. Each selected substrate could
be converted into the azido derivative in moderate to good yields.
It appears that base plays a critical role in the outcome of the reac-
13. General procedure for the azidation reaction: To a solution of
(100 mg, 0.7 mmol) in dry DMSO (5 mL) was added TsN3 (153 mg, 0.7 mmol)
followed by -proline (89 mg, 0.7 mmol) and the mixture was allowed to stir at
c-butyrolactone 1a
L
tion. Results showed that L-proline should be preferred for the azi-
rt for 72 h. The reaction mixture was diluted with water (10 mL) and extracted
with CH2Cl2 (2 Â 10 mL). The organic layers were dried over Na2SO4 and
concentrated under reduced pressure to give the crude product, which was
purified by silica gel column chromatography. Elution of the column with
ethylacetate:cyclohexane (2:8) gave the desired azidation product 2a as a
colorless liquid (81 mg, 62%). Spectral data for azidation product 2a: 1H NMR
(300 MHz, CDCl3): d 2.27–2.36 (m, 1H), 2.43 (s, 3H), 2.71–2.79 (m, 1H), 4.33–
4.47 (s, 2H); 13C NMR (75 MHz, CDCl3): d 26.3, 32.4, 66.4, 72.8, 170.7, 200.4.; IR
(Neat): 2107, 1765, 1722, 1359, 1219, 1191, 1166, 1019 cmÀ1.; LC–MS (CI):
170.1 (M+1); 2b: (1H NMR (300 MHz, CDCl3): d 1.34 (t, J = 4.56 Hz, 3H), 2.28
(quintet, J = 4.58 Hz, 1H), 2.76 (quintet, J = 3.74 Hz, 1H), 4.34 (q, J = 4.8 Hz, 2H),
4.39–4.47 (m, 2H); 13C NMR (75 MHz, CDCl3): d 14.3, 14.4, 33.7, 64.0, 66.9,
167.1, 171.1; IR (Neat): 2117, 1776, 1746, 1242, 1214, 1172, 1117, 1020, 909,
729 cmÀ1; LC–MS (CI): 200.1 (M+1); 2c: 1H NMR (300 MHz, CDCl3): d 1.37 (t,
J = 5.2 Hz, 3H), 2.68 (d, J = 18.4 Hz, 1H), 3.1 (d, J = 18.0 Hz, 1H), 4.40 (q,
J = 7.1 Hz, 2H), 8.69 (br s, 1H).; 13C NMR (75 MHz, CDCl3): d 14.3, 41.0, 64.5,
67.4, 166.6, 172.0, 173.1; IR (Neat): 3268, 2986, 2120, 1715, 1368, 1267, 1234,
1182, 1051, 732, 696 cmÀ1; LC–MS (CI): 213 (M+1); 2d: 1H NMR (300 MHz,
CDCl3): d 1.31 (t, J = 3 Hz, 3H), 2.01–2.08 (m, 1H), 2.40–2.48 (m, 1H), 2.64–2.76
(m, 2H), 4.32–4.39 (q, J = 3 Hz, 2H), 8.50 (br s, 1H); 13C NMR (75 MHz, CDCl3): d
14.3, 27.5, 28.2, 64.0, 67.3, 167.2, 167.3, 171.1; IR (Neat): 3242, 3106, 2985,
2117, 1702, 1354, 1232, 1187, 1095, 1048, 729 cmÀ1; LC–MS (CI): 227 (M+1);
2e: 1H NMR (300 MHz, CDCl3): d 1.36 (t, J = 6 Hz, 3H), 1.87–2.00 (m, 3H), 2.16–
2.29 (m 1H), 3.37–3.45 (m, 2H), 4.27–4.43 (m, 2H), 7.02 (br s, 1H); 13C NMR
(75 MHz, CDCl3): d 13.7, 17.9, 30.6, 41.7, 62.3, 67.5, 166.2, 168.7; IR (Neat):
dation of five-membered rings and TBD or DBU are more
appropriate for the conversion of six-membered rings. Thus, it ap-
pears that direct azidation of heterocyclic b-ketoesters is a potent
alternative to the standard two-step procedure (halogenation and
displacement with azide ion).
Acknowledgments
We thank the CNRS, the Agence nationale de la recherche (ANR)
for financial support.
References and notes
1. (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188–5240. and references cited therein; (b) Sahasrabudhe, K.; Gracias, V.;
Furness, K.; Smith, B. T.; Katz, C. E.; Reddy, D. S.; Aubé, J. J. Am. Chem. Soc. 2003,
125, 7914–7922; (c) Kumagai, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2004, 43, 478–482; (d) Palacios, F.; de Retana, A. M. C.; de Marigorta, E.
M.; Rodriguez, M.; Pagalday, J. Tetrahedron 2003, 59, 2617–2623; (e) Langer, P.;
Freifeld, I.; Shojaei, H. Chem. Commun. 2003, 3044–3045; (f) Obika, S.; Andoh, J.-
i.; Onoda, M.; Nakagawa, O.; Hiroto, A.; Sugimoto, T.; Imanishi, T. Tetrahedron
Lett. 2003, 44, 5267–5270; (g) Feldman, A. K.; Colasson, B.; Sharpless, K. B.;
Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 13444–13445.
3249, 2941, 2869, 2120, 1744, 1670, 1486, 1239, 1196, 1107, 1052, 1014 cmÀ1
LC–MS (CI): 213 (M+1).
;
14. Procedure for the reduction of azide 2e: To a solution of 2e (50 mg, 0.23 mmol) in
toluene (0.5 mL) was added triphenylphosphine (0.19 mmol, 50 mg). The
reaction was stirred for 5 min at rt then a solution of HCl 5% (0.5 mL) was
added. The solution was stirred overnight then extracted with DCM (2 Â 2 mL),
the aqueous layer was basified with NaOH (1 N) and extracted with DCM
(3 Â 3 mL). The organic layers were dried over Na2SO4 and concentrated under
reduced pressure to give compound 3 (22 mg, 51%) as a colorless oil. 1H NMR
(400 MHz, CDCl3): d 1.29 (t, J = 6 Hz, 3H), 1.82–2.02 (m, 5H), 2.20–2.25 (m 1H),
3.38–3.42 (m, 2H), 4.20–4.29 (m, 2H), 6.15 (br s, 1H); 13C NMR (100 MHz,
CDCl3): d 14.1, 19.1, 33.4, 42.6, 61.9, 62.0, 170.6, 174.0; IR (Neat): 3227, 2942,
1731, 1666, 1195, 730 cmÀ1; LC–MS (APCI): 187 (M+1).
15. Procedure for the click reaction with 2e: To a solution of azide 2e (54 mg,
0.17 mmol) in a mixture tBuOH/H2O 4/1 (8 mL) were added phenylacetylene
(26 mg, 0.17 mmol), sodium ascorbate (10 mg, 0.034 mmol), and CuSO4 (6 mg,
0.017 mmol). The mixture was stirred overnight at rt then extracted with
EtOAc (2 Â 10 mL). The organic layers were dried over Na2SO4 and
concentrated under reduced pressure to give the crude product, which was
purified by silica gel column chromatography. Elution of the column with
ethylacetate:cyclohexane (3:7) gave the desired triazole 4 as a colorless liquid
(24 mg, 45%). 1H NMR (400 MHz, CDCl3): d 1.21 (t, J = 6 Hz, 3H), 1.94–1.97 (m,
2H), 2.62–2.69 (m 1H), 3.45–3.47 (m, 3H), 4.19–4.26 (m, 2H), 6.21 (br s, 1H),
7.23–7.27 (m, 1H), 7.33–7.37 (m, 2H), 7.78–7.81 (m, 2H), 8.22 (s, 1H); 13C NMR
(75 MHz, CDCl3): d 13.9, 18.4, 29.5, 42.6, 63.2, 70.4, 121.9, 125.8, 128.1, 128.8,
130.6, 147.4, 164.8, 167.9; IR (Neat): 3249, 2930, 2122, 1747, 1678, 1254, 1200,
732, 694 cmÀ1; LC–MS (APCI): 315 (M+1).
2. (a) Eguchi, S. ARKIVOC 2005, 98–119. and references cited therein; (b)
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353–1406.
3. (a) Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Poojary, B.; Akberali, P. M.;
Kumari, N. S. Eur. J. Med. Chem. 2005, 40, 1173–1178; (b) Bencivenni, G.; Lanza,
T.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Zanardi, G. J. Org. Chem.
2008, 73, 4721–4724.
4. (a) Dedola, S.; Nepogodiev, S. A.; Field, R. A. Org. Biomol. Chem. 2007, 5, 1006–
1017; (b) Binder, W. H.; Kluger, C. Curr. Org. Chem. 2006, 10, 1791–1815; (c) Kolb,
H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.
5. (a)Oguri, H.; Schreiber, S. L. Org. Lett. 2005, 7, 47–50; (b) Mashiko, T.; Kumagai, N.;
Shibasaki, M. Org. Lett. 2008, 10, 2725–2728; (c) Terada, M.; Nakano, M.; Ube, H. J.
Am. Chem. Soc. 2006, 128, 16044–116045; (d) Yang, D.; Yan, Y.-L.; Lui, B. J. Org.
Chem. 2002, 67, 7429–7431; (e) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105–108; (f) Mekonnen,
A.; Carlson, R. Eur. J. Org. Chem. 2006, 2005–2013; (g) Kawabata, T.; Kato, M.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Eur. J. 2005, 11, 288–297.
6. (a) Benati, L.; Nanni, D.; Spagnolo, P. J. Chem. Soc., Perkin Trans. 1 1997, 457–461;
(b) Benati, L.; Calestani, G.; Nanni, D.; Spagnolo, P. J. Org. Chem. 1998, 63, 4679–
4684; (c) Benati, L.; Nanni, D.; Spagnolo, P. J. Org. Chem. 1999, 64, 5132–5138.
7. Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.;
Spagnolo, P.; Zanardi, G. J. Org. Chem. 2005, 70, 3046–3053.
8. Hakimelahi, G. H.; Just, G. Synth. Commun. 1980, 10, 429–435.
9. (a) Moriarty, R. M.; Vaid, R. K.; Ravikumar, V. T.; Vaid, B. K.; Hopkins, T. E.
Tetrahedron Lett. 1988, 44, 1603–1604; (b) Moriarty, R. M.; Vaid, R. K.;
Ravikumar, V. T.; Vaid, B. K.; Hopkins, T. E. Tetrahedron 1988, 44, 1603–1607.