A R T I C L E S
Fuks et al.
Chart 2
Chart 3
giving access to a variety of unusual phosphorus-containing
heterocycles.5d,e,g-i,k,l So far, the intermolecular reactivity of
1,3-dibora-2,4-diphosphoniocyclobutane-1,3-diyls D has been
poorly explored. Oxidation reactions have been reported with
CDCl3/Cl2 and Se/PhSeSePh, leading to the cis/trans-dichloro
and selenium adducts G and H, respectively. In addition, the
spontaneous formation of the 1,3-diborata-2,4-diphosphonio-
cyclobutanes I and J upon reaction with trimethyltin hydride
and bromotrichloromethane provided convincing evidence for
radical-type behavior of D (Chart 2).6b
Interestingly, in contrast to 2,4-diphosphacyclobutane-1,3-
diyls C, but similarly to cycloalkane-1,3-diyls A and B, the
frontier orbitals of 1,3-dibora-2,4-diphosphoniocyclobutane-1,3-
diyls D are associated with in-phase (HOMO) and out-of-phase
(LUMO) combinations of 2p(B) orbitals, in line with some
through-space transannular π-bonding (Chart 3).6a,13 This sug-
gests that some analogy could be formally drawn between PBPB
systems D and alkenes, although in contrast with the latter no
BB σ-bond is present. This prompted us to investigate the
chemical behavior of diradicaloids D toward hydracids, and we
report here the first experimental and computational evidence
of ionic-type reactivity for these PBPB systems.
Results and Discussion
Reaction of PBPB Systems 1 and 3 with HCl. The sym-
metrically substituted 1,3-dibora-2,4-diphosphoniocyclobutane-
1,3-diyl 16a was treated with 1 equiv of hydrogen chloride (2
M solution in diethyl ether) in toluene at -78 °C. Within 5
min, the solution turned from intense yellow to colorless,
(5) For 2,4-diphosphacyclobutane-1,3-diyls C, see:(a) Niecke, E.; Fuchs,
A.; Baumeister, F.; Nieger, M.; Schoeller, W. W. Angew. Chem., Int.
Ed. 1995, 34, 555–557. (b) Schmidt, O.; Fuchs, A.; Gudat, D.; Nieger,
M.; Hoffbauer, W.; Niecke, E.; Schoeller, W. W. Angew. Chem., Int.
Ed. 1998, 37, 949–952. (c) Niecke, E.; Fuchs, A.; Nieger, M. Angew.
Chem., Int. Ed. 1999, 38, 3028–3034. (d) Niecke, E.; Fuchs, A.; Nieger,
M.; Schmidt, O.; Schoeller, W. W. Angew. Chem., Int. Ed. 1999, 38,
3031–3034. (e) Fuchs, A.; Gudat, D.; Nieger, M.; Schmidt, O.;
Sebastian, M.; Nyulaszi, L.; Niecke, E. Chem.sEur. J. 2002, 8, 2188–
2196. (f) Sugiyama, H.; Ito, S.; Yoshifuji, M. Angew. Chem., Int. Ed.
2003, 42, 3802–3804. (g) Sebastian, M.; Nieger, M.; Szieberth, D.;
Nyulaszi, L.; Niecke, E. Angew. Chem., Int. Ed. 2004, 43, 637–641.
(h) Sugiyama, H.; Ito, S.; Yoshifuji, M. Chem.sEur. J. 2004, 10,
2700–2706. (i) Sebastian, M.; Hoskin, A.; Nieger, M.; Nyulaszi, L.;
Niecke, E. Angew. Chem., Int. Ed. 2005, 44, 1405–1408. (j) Yoshifuji,
M.; Sugiyama, H.; Ito, S. J. Organomet. Chem. 2005, 690, 2515–
2520. (k) Yoshifuji, M.; Arduengo, A. J., III; Konovalova, T. A.;
Kispert, L. D.; Kikuchi, M.; Ito, S. Chem. Lett. 2006, 35, 1136–1137.
(l) Ito, S.; Kikuchi, M.; Sugiyama, H.; Yoshifuji, M. J. Organomet.
Chem. 2007, 692, 2761–2767. (m) Ito, S.; Miura, J.; Yoshifuji, M.;
Arduengo, A. J., III. Angew. Chem. Int. Ed. 2008, 47, 6418–6421. (n)
Sebastian, M.; Schmidt, O.; Fuchs, A.; Nieger, M.; Szieberth, D.;
Nyulaszi, L.; Niecke, E. Phosphorus, Sulfur, Silicon 2004, 179, 779–
783.
1
indicating the complete consumption of 1. According to H
NMR spectroscopy, a new compound 2 was formed in >80%
yield (Scheme 1). The mass spectrum [EI, m/z ) 406 (M+)]
(11) For related Si-containing systems, see:(a) Masamune, S.; Kabe, Y.;
Collins, S.; Williams, D. J.; Jones, R. J. Am. Chem. Soc. 1985, 107,
5552–5553. (b) Jones, R.; Williams, D. J.; Kabe, Y.; Masamune, S.
Angew. Chem., Int. Ed. 1986, 25, 173–174. (c) Hengge, E.; Janoschek,
R. Chem. ReV. 1995, 95, 1495. (d) Driess, M.; Gru¨tzmacher, H. Angew.
Chem., Int. Ed. 1996, 35, 828–856. (e) Iwamoto, T.; Yin, D.; Kabuto,
C.; Kira, M. J. Am. Chem. Soc. 2001, 123, 12730–12731. (f)
Hammann, B.; Chen, C.; Flo¨rke, U.; Hauptmann, R.; Bill, E.;
Sinnecker, S.; Henkel, G. Angew. Chem., Int. Ed. 2006, 45, 8245–
8249.
(12) For cycloalkane-1,3-diyls, see:(a) Xu, J. D.; Hrovat, D. A.; Borden,
W. T. J. Am. Chem. Soc. 1994, 116, 5425–5427. (b) Zhang, D. Y.;
Hrovat, D. A.; Abe, M.; Borden, W. T. J. Am. Chem. Soc. 2003, 125,
12823–12828. (c) Abe, M.; Ishihara, C.; Nojima, M. J. Org. Chem.
2003, 68, 1618–1621. (d) Ma, J.; Ding, Y.; Hattori, K.; Inagaki, S. J.
Org. Chem. 2004, 69, 4245–4255. (e) Abe, M.; Ishihara, C.; Tagegami,
A. J. Org. Chem. 2004, 69, 7250–7255. (f) Abe, M.; Ishihara, C.;
Kawanami, S.; Masuyama, A. J. Am. Chem. Soc. 2005, 127, 10–11.
(g) Shelton, G. R.; Hrovat, D. A.; Borden, W. T. J. Org. Chem. 2006,
71, 2982–2986. (h) Lemal, D. M. J. Org. Chem. 2009, 74, 2413–
2416.
(6) For 1,3-dibora-2,4-diphosphoniocyclobutane-1,3-diyls D, see:(a) Schesch-
kewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.; Bourissou,
D.; Bertrand, G. Science 2002, 295, 1880–1881. (b) Amii, H.; Vranicar,
L.; Gornitzka, H.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2004,
126, 1344–1345. (c) Scheschkewitz, D.; Amii, H.; Gornitzka, H.;
Schoeller, W. W.; Bourissou, D.; Bertrand, G. Angew. Chem., Int.
Ed. 2004, 43, 585–587. (d) Rodriguez, A.; Tham, F. S.; Schoeller,
W. W.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 4876–4880.
(e) Rodriguez, A.; Olsen, R. A.; Ghaderi, N.; Scheschkewitz, D.; Tham,
F. S.; Mueller, L. J.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43,
4880–4883. (f) Bourg, J. B.; Rodriguez, A.; Scheschkewitz, D.;
Gornitzka, H.; Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed.
2007, 46, 5741–5745. (g) Rodriguez, A.; Fuks, G.; Bourg, J. B.;
Bourissou, D.; Tham, F. S.; Bertrand, G. Dalton. Trans. 2008, 4482–
4487.
(13) For heteroatom-containing 1,3-diradicaloids, see:(a) Schoeller, W. W.;
Begemann, C.; Niecke, E.; Gudat, D. J. Phys. Chem. 2001, 105,
10731–10738. (b) Seierstad, M.; Kinsinger, R. C.; Cramer, C. J.
Angew. Chem., Int. Ed. 2002, 41, 3894–3896. (c) Cheng, M.; Hu, C.
Mol. Phys. 2003, 101, 1319–1323. (d) Schoeller, W. W.; Rozhenko,
A.; Bourissou, D.; Bertrand, G. Chem.sEur. J. 2003, 9, 3611–3617.
(e) Jung, Y.; Head-Gordon, M. J. Phys. Chem. 2003, 107, 7475–7481.
(f) Jung, Y.; Head-Gordon, M. Chem. Phys. Chem. 2003, 4, 522–
525.
(14) For the catenation of cycloalkane-1,3-diyls, see:(a) Jacobs, A. J.;
Dougherty, D. A. Angew. Chem., Int. Ed. 1994, 33, 1104–1106. (b)
Adam, W.; van Barneveld, C.; Bottle, S. E.; Engert, H.; Hanson, G. R.;
Harrer, H. M.; Heim, C.; Nau, W. M.; Wang, D. J. Am. Chem. Soc.
1996, 118, 3974–3975.
(7) For a GeNGeN system E, see: Cui, C.; Brynda, M.; Olmstead, M. M.;
Power, P. P. J. Am. Chem. Soc. 2004, 126, 6510–6511.
(8) For a SnNSnN system F, see: Cox, H.; Hitchcock, P. B.; Lappert,
M. F.; Pierssens, L. J. M. Angew. Chem., Int. Ed. 2004, 43, 4500–
4504.
(15) For intramolecular reactivity of cycloalkane-1,3-diyls, see:(a) Abe, M.;
Adam, W.; Ino, Y.; Nojima, M. J. Am. Chem. Soc. 2000, 122, 6508–
6509. (b) Adam, W.; Maas, W.; Nau, W. M. J. Org. Chem. 2000, 65,
8790–8796. (c) Abe, M.; Adam, W.; Borden, W. T.; Hattori, M.;
Hrovat, D. A.; Nojima, M.; Nozaki, K.; Wirz, J. J. Am. Chem. Soc.
2004, 126, 574–582. (d) Abe, M.; Kawanami, S.; Ishihara, C.; Nojima,
M. J. Org. Chem. 2004, 69, 5622–5626. (e) Abe, M.; Hattori, M.;
Takegami, A.; Masuyama, A.; Hayashi, T.; Seki, S.; Tagawa, S. J. Am.
Chem. Soc. 2006, 128, 8008–8014.
(9) For BPBP systems related to D by inverting the role played by
phosphorus and boron, see: Gandon, V.; Bourg, J. B.; Tham, F. S.;
Schoeller, W. W.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 155–
159.
(10) For somewhat related [Fe2(CO)6(µ-X)2] systems (X ) S or PR), see:
(a) Silaghi-Dumitrescu, I.; Bitterwolf, T. E.; King, B. R. J. Am. Chem.
Soc. 2006, 128, 5342–5343. (b) Silaghi-Dumitrescu, I.; Bitterwolf,
T. E.; King, B. R. J. Am. Chem. Soc. 2008, 130, 901–906.
9
13682 J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009