using a catalytic amount of an N,O-ligand.7 We have also
contributed to this research field by developing a rhodium-
catalyzed asymmetric addition of arylboroxine to N-sulfo-
nylimine using N-Boc-L-valine-connected amidomonophos-
phane 1 as a chiral ligand.8 Arylboronic acid and arylboroxine
are attractive arylating reagents because of their lower
toxicity, stability in air and moisture, commercial availability,
and good tolerance to a wide range of functional groups.9
Other research groups have also reported the rhodium-
catalyzed asymmetric addition of arylboronic reagents to
N-tosylaldimines using ligands such as C2-symmetric chiral
diene,10 a spirocyclic phosphite,11 or N-linked bidentate
phosphoramidite.12 Although these methods yield products
with high enantioselectivity, the conditions required for the
reductive removal of a tosyl group from nitrogen, such as
samarium(II) iodide with HMPA in refluxing THF, are
incompatible with electron-accepting functional groups, e.g.
carbonyl, nitro, and halogens. Recently, the rhodium-
catalyzed asymmetric addition of arylboronic acid to N-
diphenylphosphinoyl-(Dpp)13 and N-Boc-imines14 generated
in situ using chiral bisphosphine ligand and to N-sulfa-
moylimines15 using phosphoramidite ligands were reported,
but the scope of N-Dpp-imines has not been examined.
Herein, we report a highly enantioselective rhodium-
catalyzed addition reaction of arylboroxines to N-Dpp-
arylimines, utilizing a sterically tuned amidomonophosphane
as the ligand, which provides a versatile entry to a wide range
of optically active diarylmethylamines.
The initial stage of our study was performed using 1.67
equiv of biphenylboroxine 4a in the presence of a chiral
amidomonophosphane 1-Rh complex (6 mol %) in pro-
panol, the conditions we previously developed for the
enantioselective addition of N-tosylimines 2 (Table 1).8
Table 1. Rh(I)-1-Catalyzed Asymmetric Arylation of N-Tosyl-
and N-Dpp-imines 2 and 3 with 4-Biphenylboroxine 4aa
entry imine
Ar
R
time (h) yieldb (%) eec (%)
1
2
3
4
2a
3a
Ph
Ph
Ts
P(dO)Ph2
3
83
95
98
74
66
70
91
81
(3) Selected examples for asymmetric synthesis of diarylmethylamines:
(a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990,
31, 6681–6684. (b) Pridgen, L. N.; Mokhallalati, M. K.; Wu, M. J. J. Org.
Chem. 1992, 57, 1237–1241. (c) Corey, E. J.; Helal, C. J. Tetrahedron Lett.
1996, 37, 4837–4840. (d) Delorme, D.; Berthelette, C.; Lavoie, R.; Roberts,
E. Tetrahedron: Asymmetry 1998, 9, 3963–3966. (e) Taniyama, D.;
Hasegawa, M.; Tomioka, K. Tetrahedron Lett. 2000, 41, 5533–5536. (f)
Pflum, D. A.; Krishnamurthy, D.; Han, Z.; Wald, S. A.; Senanayake, C. H.
Tetrahedron Lett. 2002, 43, 923–926. (g) Plobeck, N.; Powell, D. Tetra-
hedron: Asymmetry 2002, 13, 303–310. (h) Han, Z.; Krishnamurthy, D.;
Grover, P.; Fang, Q. K.; Pflum, D. A.; Senanayake, C. H. Tetrahedron Lett.
2003, 44, 4195–4197. (i) Cabello, N.; Kizirian, J.-C.; Alexakis, A.
Tetrahedron Lett. 2004, 45, 4639–4642.
3
2b 2-TMSC6H4 Ts
3
3.5
3b 2-TMSC6H4 P(dO)Ph2
a Reaction of 0.2 mmol of 2 or 3 with 6 mol % of Rh(acac)(C2H4)2 and
6.6 mol % of 1 at 80 °C. b Isolated yield. c Determined by chiral HPLC.
Reaction of Dpp-imine 3a was complete within 3 h, and the
addition product 6aa16 with 70% ee was obtained in 95%
yield (entry 2). This enantioselectivity paralleled that of
tosylimine 2a (entry 1). The 2-TMSC6H4 imine 3b, which
was effective in the reaction of tosylimine 2b (91% ee, entry
3), slightly improved the enantioselectivity to 81% ee (entry
4). Because the enantioselectivity was not satisfactory for
N-Dpp-imines 3 (entries 2 and 4), however, steric tuning of
the amidophosphane was the target of the second stage of
the study based on the stereochemical analysis.
(4) Selected examples of catalytic asymmetric alkylation of imines: (a)
Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. Tetrahedron Lett. 1991, 32,
3095–3098. (b) Soai, K.; Hatanaka, T.; Miyazawa, T. J. Chem. Soc., Chem.
Commun. 1992, 1097–1098. (c) Denmark, S. E.; Nakajima, N.; Nicaise,
O. J.-C. J. Am. Chem. Soc. 1994, 116, 8797–8798. (d) Fujihara, H.; Nagai,
K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055–12056. (e) Dahmen,
S.; Bra¨se, S. J. Am. Chem. Soc. 2002, 124, 5940–5941. (f) Boezio, A. A.;
Charette, A. B. J. Am. Chem. Soc. 2003, 125, 1692–1693. (g) Pizzuti, M. G.;
Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2008, 73, 940–947.
(5) (a) Hayashi, T.; Ishigetani, M. J. Am. Chem. Soc. 2000, 122, 976–
977. (b) Hayashi, T.; Ishigetani, M. Tetrahedron 2001, 57, 2589–2598.
Review: (c) Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829–2844.
(6) Hayashi, T.; Kawai, M.; Tokunaga, N. Angew. Chem., Int. Ed. 2004,
43, 6125–6128.
The X-ray crystal structure of rhodium(I)-717 suggests
that the CdN double bond of N-Dpp-imine 3a coordinates
to rhodium(I)18 on the Re-face (A) to give the product with
the observed S-configuration (Figure 1). Coordination on the
Si-face (B) is unfavorable due to steric repulsion between
the axial phenyl of the phosphorus and the phenyl group of
Dpp. This analysis indicated that the bulkiness of the phenyl
(7) Hermanns, N.; Dahmen, S.; Bolm, C.; Bra¨se, S. Angew. Chem., Int.
Ed. 2002, 41, 3692–3694.
(8) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am.
Chem. Soc. 2004, 126, 8128–8129.
(9) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(10) (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584–13585. (b) Otomaru,
Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307–310.
(c) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc.
2007, 129, 5336–5337.
(16) The first “a” and second “a” of 6aa are derived from the suffixes
of 3a and 4a, respectively.
(17) Kuriyama, M.; Nagai, K.; Yamada, K.; Miwa, Y.; Taga, T.;
Tomioka, K. J. Am. Chem. Soc. 2002, 124, 8932–8939.
(18) The Ar-Rh(I) species is formed by transmetalation between
rhodium(I) and arylboroxine at the trans side to phosphorus, which is the
most vacant coordination site and influenced by the trans effect of phosphine.
See ref 17.
(11) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006,
8, 2567–2569.
(12) Kurihara, K.; Yamamoto, Y.; Miyaura, N. AdV. Synth. Catal. 2009,
351, 260–270.
(13) (a) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005,
127, 1092–1093. (b) Trincado, M.; Ellman, J. A. Angew. Chem., Int. Ed.
2008, 47, 5623–5626.
(19) Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H.
J. Am. Chem. Soc. 1994, 116, 9869–9882.
(14) Nakagawa, H.; Rech, J. C.; Sindelar, R. W.; Ellman, J. A. Org.
Lett. 2007, 9, 5155–5157.
(20) Bis(3,5-diphenylphenyl)phosphoryl chloride was synthesized from
(Et2N)PCl2 and 3,5-diphenylphenylmagnesium bromide, which was prepared
from known aryl bromide. Du, C. F.; Hart, H.; Na, K. D. J. Org. Chem.
1986, 51, 3165–3169.
(15) Jagt, R. B. C.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa,
B. L.; Minnaard, A. J. Angew. Chem., Int. Ed. 2006, 45, 2789–2791.
Org. Lett., Vol. 11, No. 19, 2009
4471