4), even with excess Lewis acid, stronger Lewis acids, longer
reaction times, and higher temperatures. The use of TBAB
resulted in the formation of bromooxadecalin 3g (entry 5)
but required both a higher temperature and a longer reaction
time than the TBAI cyclization (entry 1).
Table 3. Bicyclization via Stepwise [4 + 2] Annulationa
The use of a disubstituted olefin demonstrated that the
cyclization was diastereoselective (entry 6). The relative ster-
eochemistry of oxadecalin 3e was confirmed by NOE experi-
ments.11 Ketone 1f, however, did not cyclize to give the
corresponding oxadecalin (entry 7). The intramolecular aldol
reaction gave 2f, but the second cyclization did not occur,
presumably because the tertiary hydroxyl group is too sterically
hindered to undergo cyclization. Extended reaction times and
higher temperatures resulted in elimination of the tertiary
alcohol. When intermediate alcohol 2f was subjected to basic
conditions, formation of the original ketone 1f was observed.
The proposed mechanistic pathway for the two cyclization
processes is shown in Scheme 2. Activation of the alkynone
carbonyl group by the Lewis acid followed by addition of
the iodide to the alkyne in a conjugate fashion gives
ꢀ-iodoallenolate 4. This intermediate then undergoes an
intramolecular aldol reaction to give cyclohexenyl alcohol
5, stabilized as its titanium chelate. Protonation of cyclo-
hexenyl alcohol 5 upon workup would then generate cyclo-
hexenyl alcohol 2a.
Scheme 2. Proposed Mechanistic Pathway
a Reaction conditions: alkynone (1.0 equiv), BF3•OEt2 (1.3 equiv), TBAI
(1.3 equiv), CH2Cl2, at the time and temperature indicated. b See text.
c Monocyclization products only. d TBAB was used instead of TBAI.
Cyclization to give the [5,6] bicycle was successful (entry
3); but formation of the [7,6] system did not occur (entry
(7) (a) Yagi, K.; Turitani, T.; Shinokubo, H.; Oshima, K. Org. Lett.
2002, 4, 3111–3114. (b) Douelle, F.; Capes, A. S.; Greaney, M. F. Org.
Lett. 2007, 9, 1931–1934. (c) Koseki, Y.; Fujino, K.; Takeshita, A.; Sato,
H.; Nagasaka, T. Tetrahedron: Asymmetry 2007, 18, 1533–1539.
(8) For examples of intramolecular Morita-Baylis-Hillman reactions,
see: (a) Roth, F.; Gygax, P.; Fra´ter, G. Tetrahedron Lett. 1992, 33, 1045–
1048. (b) Keck, G. E.; Welch, D. S. Org. Lett. 2002, 4, 3687–3690. (c)
Yeo, J. E.; Yang, X.; Kim, H. J.; Koo, S. Chem. Commun. 2004, 2, 236–
237. (d) Black, G. P.; Dinon, F.; Fratucello, S.; Murphy, P. J.; Nielsen, M.;
Williams, H. L.; Walshe, N. D. A. Tetrahedron Lett. 1997, 38, 8561–8564.
(e) Chen, S.-H.; Hong, B. C.; Su, C. F.; Sarshar, S. Tetrahedron Lett. 2005,
46, 8899–8903. (f) Krishna, P. R.; Kannan, V.; Sharma, G. V. M. J. Org.
Chem. 2004, 69, 6467–6469. (g) Basavaiah, D.; Rao, A. J.; Satyanarayana,
T. Chem. ReV. 2003, 103, 811–892. (h) Wang, L.-C.; Luis, A. L.; Agapiou,
K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402–2403.
(i) Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002,
124, 2404–2405. (j) Teng, W.-D.; Huang, R.; Kwong, C. K.-W.; Shi, M.;
Toy, P. H. J. Org. Chem. 2005, 71, 368–371, and references therein.
Subjection of cyclohexenyl alcohol 2a to BF3·OEt2 pro-
duced oxadecalin 3a, indication of a stepwise [4 + 2]
cyclization process. In contrast to the first step of the
(9) For the use of CeCl3 as a Lewis acid to generate ꢀ-iodoallenolate
intermediates, see: (a) Yadav, J. S.; Reddy, B. V. S.; Gupta, M. K.;
Eeshwaraiah, B. Synthesis 2005, 57–60. (b) Fujisawa, T.; Tanaka, A.; Ukaji,
Y. Chem. Lett. 1989, 7, 1255–1256.
(10) For additional examples of ꢀ-bromoallenolates, see: (a) Taniguchi,
M.; Kobayashi, S.; Nakagawa, M.; Hino, T.; Kishi, Y. Tetrahedron Lett.
1986, 27, 4763–4766. (b) Wei, H. X.; Jasoni, R. L.; Hu, J. L.; Li, G. G.;
Pare, P. W. Tetrahedron 2004, 60, 10233–10237.
4376
Org. Lett., Vol. 11, No. 19, 2009