1 (a) P. A. Lindahl, D. E. Graham, in Nickel and Its Surprising Impact
in Nature, Metal Ions in Life Sciences, Vol. 2, ed. A. Sigel, H. Sigel and
R. K. O. Sigel, John Wiley & Sons, Ltd., Chichester, UK, 2004, p. 357;
(b) C. G. Riordan, J. Biol. Inorg. Chem, 2004, 9, 509; (c) S. W. Ragsdale,
Crit. Rev. Biochem. Mol. Biol., 2004, 39, 165; (d) J. C. Fontecilla-Camps,
P. Amara, C. Cavazza, Y. Nicolet and A. Volbeda, Nature, 2009, 460,
814.
2 (a) C. Darnault, A. Volbeda, E. J. Kim, P. Legrand, X. Vernede, P. A.
Lindahl and J. C. Fontecilla-Camps, Nat. Struct. Biol., 2003, 10, 271;
(b) T. Doukov, T. M. Iverson, J. Seravalli, S. W. Ragsdale and C. L.
Drennan, Science, 2002, 298, 567.
3 V. Svetlitchnyi, H. Dobbek, W. Meyer-Klaucke, T. Meins, B. Thiele, P.
Ro¨mer, R. Huber and O. Meyer, Proc. Natl. Acad. Sci. U. S. A., 2004,
101, 446.
4 (a) X. Tan, C. Sewell and P. A. Lindahl, J. Am. Chem. Soc., 2002, 124,
6277; (b) X. Tan, C. Sewell, Q. Yang and P. A. Lindahl, J. Am. Chem.
Soc., 2003, 125, 318; (c) X. Tan, I. V. Surovtsev and P. A. Lindahl, J. Am.
Chem. Soc., 2006, 128, 12331; (d) M. R. Bramlett, A. Stubna, X. Tan,
I. V. Surovtsev, E. Mu¨nck and P. A. Lindahl, Biochemistry, 2006, 45,
8674; (e) X. Tan, M. Marle`ne, A. Stubna, P. A. Lindahl and E. Mu¨nck,
J. Am. Chem. Soc., 2008, 130, 6712; (f) A. Volbeda, C. Darnault, X.
Tan, P. A. Lindahl and J. C. Fontecilla-Camps, Biochemistry, 2009, 48,
7916See also,; S. Gencic and D. A. Grahame, Biochemistry, 2008, 47,
5544.
5 J. Seravalli and S. W. Ragsdale, J. Biol. Chem., 2008, 283, 8384.
6 (a) M. Ito, M. Kotera, T. Matsumoto and K. Tatsumi, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 11862; (b) Y. Song, M. Ito, M. Kotera, T.
Matsumoto and K. Tatsumi, Chem. Lett., 2009, 38, 184; (c) M. Ito, M.
Kotera, Y. Song, T. Matsumoto and K. Tatsumi, Inorg. Chem., 2009,
48, 1250.
Scheme 2 The reaction of 3 with Co(dmgBF2)2(Me)(Py) and CO.
[Fe4S4] cluster are needed for a better understanding of the
function of ACS.
7 M. S. Ram, C. G. Riordan, G. P. A. Yap, L. Liable-Sands, A. L.
Rheingold, A. Marchaj and J. R. Norton, J. Am. Chem. Soc., 1997,
119, 1648.
Acknowledgements
8 (a) Q. Wang, A. J. Blake, E. S. Davies, E. J. L. McInnes, C. Wilson
and M. Schro¨der, Chem. Commun., 2003, 3012; (b) R. C. Linck, C. W.
Spahn, T. B. Rauchfuss and S. R. Wilson, J. Am. Chem. Soc., 2003,
125, 8700; (c) R. Krishnan and C. Riordan, J. Am. Chem. Soc., 2004,
126, 4484; (d) P. V. Rao, S. Bhaduri, J. Jiang and R. H. Holm, Inorg.
Chem., 2004, 43, 5833; (e) T. C. Harrop, M. M. Olmstead and P. K.
Mascharak, J. Am. Chem. Soc., 2004, 126, 14714; (f) P. V. Rao, S.
Bhaduri, J. Jiang, D. Hong and R. H. Holm, J. Am. Chem. Soc., 2005,
127, 1933; (g) S. E. Duff, J. E. Barclay, S. C. Davies, P. B. Hitchcock
and D. J. Evans, Eur. J. Inorg. Chem., 2005, 4527; (h) T. C. Harrop,
M. M. Olmstead and P. K. Mascharak, Inorg. Chem., 2006, 45, 3424;
(i) M. V. Rampersad, S. P. Jeffery, J. H. Reibenspies, C. G. Ortiz, D. J.
Darensbourg and M. Y. Darensbourg, Angew. Chem., Int. Ed., 2005,
44, 1217; (j) W. G. Dougherty, K. Rangan, M. J. O’Hagan, G. P. A. Yap
and C. G. Riordan, J. Am. Chem. Soc., 2008, 130, 13510; (k) P. W. G.
Ariyananda, M. T. Kieber-Emmons, G. P. A. Yap and C. G. Riordan,
Dalton Trans., 2009, 4359.
This research was financially supported by Grant-in-Aids for
Scientific Research (Nos. 18GS0207 and 18065013) from the
Ministry of Education, Culture, Sports, Science, and Technology,
Japan, and the Global COE program (B08) from MEXT, Japan.
We are grateful to Prof. Roger E. Cramer for discussions and
careful reading of the manuscript.
Notes and references
‡ Crystal data of 3. The crystal contains 3 and a toluene molecule in
the asymmetric unit. The single crystal was mounted on a loop using oil
(CryoLoop, Immersion Oil type B: Code 1248, Hampton Laboratories,
Inc.). Diffraction data was collected at -100 ◦C under a cold nitrogen
stream on a Rigaku AFC8 equipped with a Saturn 70 CCD area
detector, equipped with a graphite monochromatized Mo-Ka source (l =
9 M. Ito, T. Matsumoto and K. Tatsumi, Inorg. Chem., 2009, 48, 2215.
10 J. L. Craft, B. S. Mandimutsira, K. Fujita, C. G. Riordan and T. C.
Brunold, Inorg. Chem., 2003, 42, 859.
˚
0.71070 A). Data were collected on 1200 oscillation images with an
11 (a) P. A. Lindahl, E. Mu¨nck and S. W. Ragsdale, J. Biol. Chem., 1990,
265, 3873; (b) P. A. Lindahl, S. W. Ragsdale and E. Mu¨nck, J. Biol.
Chem., 1990, 265, 3880; (c) S. W. Ragsdale, H. G. Wood and W. E.
Antholine, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 6811.
12 E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N.
Lehnert, F. Neese, A. T. Skulan, Y.-S. Yang and J. Zhou, Chem. Rev.,
2000, 100, 235.
oscillation range of 0.3◦. The frame data were integrated and corrected
for absorption using a Rigaku/MSC CrystalClear program package. The
structure was solved by a direct method (SIR-97), and was refined by full-
matrix least squares on F2 using SHELXL-97 in a Rigaku/MSC Crystal
Structure program package. Anisotropic refinement was applied to all non-
hydrogen atoms except for the disordered atoms, and all hydrogen atoms
were placed at the calculated positions. Crystal data: C60H72N2PS3Ni2;
13 The potential was converted from the Ag/Ag+ to the SCE reference
electrode by adding 0.15 V, see N. G. Connelly and W. E. Geiger,
Chem. Rev., 1996, 96, 877.
orthorhombic; P212121 (#19); a = 13.5400(17), b = 14.7402(19), c =
3
˚
˚
˚
27.322(4) A; V = 5452.9(12) A ; Z = 4; T = 173 K; l = 0.71073 A;
F(000) = 2260; m = 0.874 cm-1; rc = 1.298 g cm-3; 44205 reflections (2q <
55.0◦), 12301 unique (Rint = 0.040); R1 = 0.0477 (I > 2s(I)), wR2 = 0.1672
(all data), GOF = 1.104, Flack parameter = -0.043(13).
14 The yields were calculated on the basis of Co(dmgBF2)2(Me)(Py).
15 They proposed a three step mechanism triggered by single electron
transfer from Ni(I) to the methylcobaloxime. See ref. 7.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 2995–2997 | 2997
©