Organometallics 2009, 28, 5661–5668 5661
DOI: 10.1021/om900614q
Acyclic Dialkylstannylene and -Plumbylene Compounds That Are
Monomeric in the Solid State
Keith Izod,* Corinne Wills, William Clegg, and Ross W. Harrington
Main Group Chemistry Laboratories, School of Chemistry, Bedson Building, Newcastle University,
Newcastle upon Tyne, NE1 7RU, U.K.
Received July 14, 2009
The new phosphine-borane adduct (Me2PhSi)CH2P(BH3)Me2 is prepared by the reaction between
Me2PhSiCl and in situ-generated Me2P(BH3)CH2Li; the adduct undergoes clean deprotonation on
treatment with n-BuLi to give the phosphine-borane-stabilized carbanion complex [(Me2PhSi)-
{Me2P(BH3)}CH]Li. The reaction between 2 equiv of [(Me2PhSi){Me2P(BH3)}CH]Li and either
Cp2Sn or Cp2Pb gives the acyclic dialkylstannylene and -plumbylene compounds rac-[(Me2PhSi)-
{Me2P(BH3)}CH]2E [E = Sn (13), Pb (14)]. Similarly, the reaction between 2 equiv of [(Me3Si)-
{Me2P(BH3)}CH]Li and either Cp2Sn or Cp2Pb yields rac-[(Me3Si){Me2P(BH3)}CH]2E [E=Sn (15),
Pb (16)]. X-ray crystallography reveals that compounds 13-16 crystallize as discrete monomers that
are stabilized by two agostic-type B-H E contacts in each case; multielement NMR spectroscopy
3 3 3
and UV/visible spectroscopy indicate that these agostic-type contacts are preserved in solution. DFT
calculations reveal that these B-H E contacts stabilize compounds 13-16 by between 38.0 and
3 3 3
43.7 kcal mol-1. Calculations suggest that the dimerization of 15, which is isoelectronic with the
archetypal dialkylstannylene {(Me3Si)2CH}2Sn, to the corresponding distannene [(Me3Si){Me2-
P(BH3)}CH]2SndSn[CH{P(BH3)Me2}(SiMe3)]2 (152) is disfavored by some 30.5 kcal mol-1
.
Introduction
carbenes. Of these compounds the heavier group 14 carbene
analogues (tetrylenes) hold a special fascination, as these
compounds are potentially useful ligands for transition
metal centers.1 Although much progress has been made in
this field over the past decade, especially in the synthesis of
diaminotetrylenes, (R2N)2E (E = Si, Ge, Sn, Pb), and their
cyclic counterparts, the N-heterocyclic tetrylenes,2 the num-
ber of hydrocarbyl-substituted tetrylenes remains relatively
low. In particular, although the chemistry of diaryltetry-
lenes, Ar2E, has become reasonably well established over the
There is a great deal of current interest in the chemistry of
heavier group 14 element analogues of alkenes, alkynes, and
*Corresponding author. E-mail: k.j.izod@ncl.ac.uk.
(1) For recent reviews of heavier tetrylene chemistry see: (a) Barrau, J.;
Rima, G. Coord. Chem. Rev. 1998, 178-180, 593. (b) Tokitoh, N.; Okazaki,
R. Coord. Chem. Rev. 2000, 210, 251. (c) Kira, M. J. Organomet. Chem.
2004, 689, 4475. (d) Weidenbruch, M. Eur. J. Inorg. Chem. 1999, 373.
(e) Klinkhammer, K. W. In Chemistry of Organic Germanium, Tin and Lead
Compounds; Rappoport, Z., Ed.; Wiley: New York, 2002; Vol. 2, pp 283-357.
(f) Veith, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 1. (g) Hill, N. J.; West, R.
J. Organomet. Chem. 2004, 689, 4165. (h) Gehrhus, B.; Lappert, M. F.
J. Organomet. Chem. 2001, 617, 209. (i) K€uhl, O. Coord. Chem. Rev. 2004,
248, 411. (j) Zemlyanskii, N. N.; Borisova, I. V.;Nechaev, M. S.; Khrustalev, V.
N.; Lunin, V. V.; Antipin, M. Yu.; Ustynyuk, Yu. A. Russ. Chem. Bull. Int. Ed.
2004, 53, 980. (k) Zabula, A. V.; Hahn, F. E. Eur. J. Inorg. Chem. 2008, 5165.
(2) For selected references to diamidosilylenes, -germylenes, -stanny-
lenes, and -plumbylenes see: (a) Driess, M.; Yao, S.; Brym, M.; van Wullen,
C.;Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628. (b) Driess, M.; Yao, S.; Brym,
M.; van Wullen, C. Angew. Chem., Int. Ed. 2006, 45, 4349. (c) Hill, N. J.; Moser,
D. F.; Guzei, I. A.; West, R. Organometallics 2005, 24, 3346. (d) Fjeldberg, T.;
Hope, H.; Lappert, M. F.; Power, P. P.; Thorne, A. J. J. Chem. Soc., Chem.
Commun. 1983, 639. (e) Olmstead, M. M.; Power, P. P. Inorg. Chem. 1984, 23,
413. (f) Tang, Y.; Felix, A. M.; Zakharov, L. N.; Rheingold, A. L.; Kemp, R. A.
Inorg. Chem. 2004, 43, 7239. (g) Avent, A. G.; Drost, C.; Gehrus, B.; Hitchcock,
P. B.; Lappert, M. F. Z. Anorg. Allg. Chem. 2004, 630, 2090. (h) Gans-Eichler,
T.; Gudat, D.; Nieger, M. Angew. Chem., Int. Ed. 2002, 41, 1888. (i) Chorley,
R. W.; Hitchcock, P. B.; Lappert, M. F.; Leung, W.-P.; Power, P. P.; Olmstead, M.
M. Inorg. Chim. Acta 1992, 198, 203. (j) Braunschweig, H.; Hitchcock, P. B.;
Lappert, M. F.; Pierssens, L. J.-M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1156.
(k) Lappert, M. F.; Slade, M. J.; Atwood, J. L.; Zaworotko, M. J. J. Chem. Soc.,
Chem. Commun. 1980, 621. (l) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. J. Am.
Chem. Soc. 2001, 123, 11162. (m) Mansell, S. M.; Russell, C. A.; Wass, D. F.
Inorg. Chem. 2008, 47, 11367. (n) Zabula, A. V.; Hahn, F. E.; Pape, T.; Hepp, A.
Organometallics 2007, 26, 1972. (o) Hahn, F. E.; Wittenbecher, L.; LeVan, D.;
Zabula, A. V. Inorg. Chem. 2007, 46, 7662. (p) Zabula, A. V.; Pape, T.; Hepp, A.;
Hahn, F. E. Organometallics 2008, 27, 2756. (q) Hahn, F. E.; Zabula, A. V.; Pape,
T.; Hepp, A.; Tonner, R.; Haunschild, R.; Frenking, G. Chem.;Eur. J. 2008, 14,
10716. (r) Hahn, F. E.; Heitmann, D.; Pape, T. Eur. J. Inorg. Chem. 2008, 1039.
(3) (a) Yang, X.-J.; Wang, Y.; Wei, P.; Quillan, B.; Robinson, G. H.
Chem. Commun. 2006, 403. (b) Phillips, A. D.; Hino, S.; Power, P. P. J. Am.
Chem. Soc. 2003, 125, 7520. (c) Pu, L.; Olmstead, M. M.; Power, P. P.;
Schiemenz, B. Organometallics 1998, 17, 5602. (d) St€urmann, M.; Weiden-
bruch, M.; Klinkhammer, K. W.; Lissner, F.; Marsmann, H. Organometallics
1998, 17, 4425. (e) Lay, U.; Pritzkow, H.; Gr€utzmacher, H. Chem. Commun.
1992, 260. (f) Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P.
Organometallics 1997, 16, 1920. (g) Gr€utzmacher, H.; Pritzkow, H.;
Edelmann, F. T. Organometallics 1991, 10, 23. (h) Brooker, S.; Buijink,
J.-K.; Edelmann, F. T. Organometallics 1991, 10, 25. (i) Tajima, T.; Takeda,
N.; Sasamori, T.; Tokitoh, N. Organometallics 2006, 25, 3552. (j) Spikes, G.
H.; Peng, Y.; Fettinger, J. C.; Power, P. P. Z. Anorg. Allg. Chem. 2006, 632,
1005. (k) Wegner, G. L.; Berger, R. J. F.; Schier, A.; Schmidbaur, H.
Organometallics 2001, 20, 418. (l) Weidenbruch, M.; Schlaefke, J.; Schafer,
A.; Peters, K.; von Schnering, H. G.; Marsmann, H. Angew. Chem., Int. Ed.
1994, 33, 1846. (m) Braunschweig, H.; Drost, C.; Hitchcock, P. B.; Lappert,
M. F.; Pierssens, L. J.-M. Angew. Chem., Int. Ed. 1997, 36, 261. (n) Bender,
J. E.; Banaszak Holl, M. K.; Kampf, J. W. Organometallics 1997, 16, 2743.
(o) Kano, N.; Shibita, K.; Tokitoh, N.; Okazaki, R. Organometallics 1999,
18, 2999. (p) Jutzi, P.; Schmidt, H.; Neumann, B.; Stammler, H.-G. Organo-
metallics 1996, 15, 741. (q) Pu, L.; Twamley, B.; Power, P. P. Organome-
tallics 2000, 19, 2874. (r) Hino, S.; Olmstead, M.; Phillips, A. D.; Wright, R.
J.; Power, P. P. Inorg. Chem. 2004, 43, 7346.
(4) (a) Davidson, P. J.; Lappert, M. F. J. Chem. Soc., Chem. Commun.
1973, 317. (b) Zilm, K. W.; Lawless, G. A.; Merrill, R. M.; Millar, J. M.;
Webb, G. G. J. Am. Chem. Soc. 1987, 109, 7236. (c) Goldberg, D. E.; Harris,
D. H.; Lappert, M. F.; Thomas, K. M. J. Chem. Soc., Chem. Commun. 1976,
261.
€
(s) Charmant, J. H.; Haddow, M. F.; Hahn, F. E.; Heitmann, D.; Frolich, R.;
(5) Jutzi, P.; Becker, A.; Stammler, H. G.; Neumann, B. Organo-
Mansell, S. M.; Russel, C. A.; Wass, D. F. Dalton Trans. 2008, 6055.
metallics 1991, 10, 1647.
r
2009 American Chemical Society
Published on Web 09/09/2009
pubs.acs.org/Organometallics