7 (a) A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau and M. M.
Olmstead, J. Am. Chem. Soc., 2007, 129, 3842–3843; (b) W. Xiao, D.
Passerone, P. Ruffieux, K. A¨ıt-Mansour, O. Gro¨ning, E. Tosatti, J. S.
Siegel and R. Fasel, J. Am. Chem. Soc., 2008, 130, 4767–4771.
8 (a) E. M. Perez, M. Sierra, L. Sanchez, M. R. Torres, R. Viruela, P. M.
Viruela, E. Ort`ı and N. Martin, Angew. Chem., Int. Ed., 2007, 46, 1847–
1851; (b) E. M. Perez, A. L. Capodilupo, G. Fernandez, L. Sanchez,
P. M. Viruela, R. Viruela, E. Ort`ı, M. Bietti and N. Martin, Chem.
Commun., 2008, 4567–4569; (c) J. Santos, B. Grimm, B. M. Illescas,
D. M. Guldi and N. Martin, Chem. Commun., 2008, 5993–5995; (d) S.
Shankara Gayatri, M. Wielopolski, E. M. Perez, G. Fernandez, L.
Sanchez, R. Viruela, E. Ort`ı, D. M. Guldi and N. Martin, Angew.
Chem., Int. Ed., 2009, 48, 815–819.
9 P. E. Georghiou, L. N. Dawe, H.-A. Tran, J. Stru¨be, B. Neumann, H.-G.
Stammler and D. Kuck, J. Org. Chem., 2008, 73, 9040–9047.
10 For discussions on the electronic properties of aromatic molecules
with convex-concave topology see: (a) M. Kamieth, F.-G. Kla¨rner
and F. Diederich, Angew. Chem., Int. Ed., 1998, 37, 3303–3306. For
applications to supramolecular fullerene chemistry see: (b) F. Diederich
and M. Gomez-Lopez, Chem. Soc. Rev., 1999, 28, 263–277. For
supramolecular (C60-Ih)[5,6]- fullerene chemistry on surfaces see: (c) D.
Bonifazi, O. Enger and F. Diederich, Chem. Soc. Rev., 2007, 36, 390–
414.
11 For a review describing early work, see: (a) F. Cozzi and J. S. Siegel, Pure
Appl. Chem., 1995, 67, 683–689. For recent work, see: (b) F. Cozzi, R.
Annunziata, M. Benaglia, M. Cinquini, L. Raimondi, K. K. Baldridge
and J. S. Siegel, Org. Biomol. Chem., 2003, 1, 157–162; (c) F. Cozzi,
R. Annunziata, M. Benaglia, K. K. Baldridge, G. Aguirre, J. Estrada,
Y. Sritana-Anant and J. S. Siegel, Phys. Chem. Chem. Phys., 2008,
10, 2686–2694; (d) F. Cozzi, F. Ponzini, R. Annunziata, M. Cinquini
and J. S. Siegel, Angew. Chem., Int. Ed. Engl., 1995, 34, 1019–1020;
(e) S. Bacchi, M. Benaglia, F. Cozzi, F. Demartin, G. Filippini and A.
Gavezzotti, Chem. Eur. J., 2006, 12, 3538–3546; (f) F. Cozzi, S. Bacchi,
G. Filippini, T. Pilati and A. Gavezzotti, Chem. Eur. J., 2007, 13, 7177–
7184.
12 (a) A. Vacca, C. Nativi, M. Cacciarini, R. Pergoli and S. Roelens, J. Am.
Chem. Soc., 2004, 126, 16456–16465; (b) O. Francesconi, A. Ienco, G.
Moneti, C. Nativi and S. Roelens, Angew. Chem., Int. Ed., 2006, 45,
6693–6696; (c) C. Nativi, M. Cacciarini, O. Francesconi, A. Vacca,
G. Moneti, A. Ienco and S. Roelens, J. Am. Chem. Soc., 2007, 129,
4377–4385; (d) M. Cacciarini, E. Cordiano, C. Nativi and S. Roelens,
J. Org. Chem., 2007, 72, 3933–3936; (e) C. Nativi, M. Cacciarini, O.
Francesconi, G. Moneti and S. Roelens, Org. Lett., 2007, 9, 4685–4688.
13 (a) G. Hennrich and E. V. Anslyn, Chem. Eur. J., 2002, 8, 2218–2224;
and references cited therein; (b) A. T. Wright, M. J. Griffin, Z. Zhong,
S. C. McCleskey, E. V. Anslyn and J. T. McDevitt, Angew. Chem., Int.
Ed., 2005, 44, 6375–6378; (c) G. Haberhauer, T. Oeser and F. Rominger,
Chem. Eur. J., 2005, 11, 6718–6726.
19 A. J. Lampkins, O. Abdul-Rahim and R. K. Castellano, J. Org. Chem.,
2006, 71, 5815–5818.
20 T. Mizutani, K. Wada and S. Kitagawa, J. Am. Chem. Soc., 1999, 121,
11425–11431.
21 S. Simaan, J. S. Siegel and S. E. Biali, J. Org. Chem., 2003, 68, 3699–
3701.
22 P. E. Gordon and A. J. Fry, Tetrahedron Lett., 2001, 42, 831–833.
23 P. Sarri, F. Venturi, F. Cuda and S. Roelens, J. Org. Chem., 2004, 69,
3654–3661.
24 (a) S. C. Zimmerman, K. W. Saionz and Z. Zeng, Proc. Natl. Acad. Sci.
U. S. A., 1993, 90, 1190–1193; (b) S. C. Zimmerman and K. W. Saionz,
J. Am. Chem. Soc., 1995, 117, 1175–1176.
25 (a) A. Bianco, F. Gasparrini, M. Maggini, D. Misiti, A. Polese, M.
Prato, G. Scorrano, C. Toniolo and C. Villani, J. Am. Chem. Soc.,
1997, 119, 7550–7554; (b) F. Gasparrini, D. Misiti, F. Della Negra,
M. Maggini, G. Scorrano and C. Villani, Tetrahedron, 2001, 57, 6997–
7002.
26 A referee suggested the possibility that the better binding provided
by receptors 2 and 4 could be due to a more rigid disposition
of the side-arms resulting from the presence of six relatively bulky
substituents. On the basis of previous14c and more recent work
(G. Hennrich, V. M. Lynch, E. V. Anslyn, Chem. Eur. J., 2002, 8, 2274–
2279) this hypothesis can be ruled out, because the rotation around the
bond between the substituent and the benzene platform in compounds
very similar to 1–4 can be slowed down only at very low temperature
(< -80 ◦C).
27 We believe that an interpretation based on the availability of the
aromatic p-electrons is more realistic than one based on the electron
“richness” or “poorness” of the aromatic residues of the receptors.
Indeed, it seems difficult to consider a perfluorophenyl residue pos-
sessing six p-electrons an electron poor moiety; rather, the availability
of p-electrons is being limited by the presence of the fluorine atoms.
We think that the p-electrons’ availability is a useful concept to
describe aromatic–aromatic interactions. For reviews on the subject,
see: (a) C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch,
J. Chem. Soc., Perkin Trans. 2, 2001, 651–669; (b) E. A. Meyer, R. K.
Castellano and F. Diederich, Angew. Chem., Int. Ed., 2003, 42, 1210–
1250; (c) S. L. Cockroft, J. Perkins, C. Zonta, H. Adams, S. E. Spey,
C. M. R. Low, J. G. Vinter, K. R. Lawson, C. J. Urch and C. A. Hunter,
Org. Biomol. Chem., 2007, 5, 1062–1080. In this context, according to
the Oxford Dictionary of English, which defines generous as “free to
give” and avaricious as “eager to keep”, the expressions “electron rich”
and “electron poor” may be more appropriately replaced by “electron
generous” and “electron avaricious”. As a matter of fact, several recent
publications dealing with the interaction between ions and p-systems
emphasized the importance of electron availability of the latter. For a
review, see: B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem.
Soc. Rev., 2008, 37, 68–83.
14 (a) D. J. Iverson, G. Hunter, J. F. Blount, J. R. Damewood and K.
Mislow, J. Am. Chem. Soc., 1981, 103, 6073–6083; (b) K. V. Kilway and
J. S. Siegel, J. Am. Chem. Soc., 1991, 113, 2332–2333; (c) K. V. Kilway
and J. S. Siegel, J. Am. Chem. Soc., 1992, 114, 255–261.
15 (a) C. Walsdorff, W. Saak and S. Pohl, J. Chem. Res. (M), 1996, 1601–
1609; (b) A. Metzger, V. M. Lynch and E. V. Anslyn, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 862–864; (c) K. V. Kilway and J. S. Siegel,
Tetrahedron, 2001, 57, 3615–3627.
16 A. L. Balch, V. J. Catalano, J. W. Lee and M. M. Olmstead, J. Am.
Chem. Soc., 1992, 114, 5455–5457.
17 C. S. Frampton, J. H. Gall and D. D. MacNicol, Acta Crystallogr.,
2000, c56, e22.
18 S. Hecht and J. M. J. Frechet, J. Am. Chem. Soc., 1999, 121, 4084–4085.
28 Z. Yoshida, H. Takekuma, S. Takekuma and Y. Matsubara, Angew.
Chem., Int. Ed. Engl., 1994, 33, 1597–1599.
29 For a recent discussion on the interaction between oxygen lone pairs
and aromatic rings see: B. W. Gung, Y. Zou, Z. Xu, J. C. Amicangelo,
D. G. Irwin, S. Ma and H.-C. Zhou, J. Org. Chem., 2008, 73, 689–693
and references cited therein.
30 The choice of this compound instead of receptor 4, which should be
a better fullerene binder on the basis of the HPLC data, rested on
the fact that 3H could only give a 1:1 adduct with fullerene, whereas
ditopic receptor 4 could give both 1:1 and 1:2 adducts, thus potentially
complicating the NMR study.
31 A. Hosseini, S. Taylor, G. Accorsi, N. Armaroli, C. A. Reed and P. D. W.
Boyd, J. Am. Chem. Soc., 2006, 128, 15903–15913.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 3871–3877 | 3877
©