Vasilevsky et al.
JOCArticle
SCHEME 9. Comparison of Total and Intrinsic Activation
Barriers (kcal/mol) for 5-Exo-Dig and 6-Endo-Dig Cyclizations
of N-Anions and C-Radicals
TABLE 5. Relative Energies of the Stereoisomers of the 5-Exo and 6-
Exo Anionic Cyclization Products B2/B3 and A1/A2 along with Energies
of Selected Hyperconjugative Interactions (B3LYP/6-31þG**) a
5-exo (Z)
5-exo (E)
6-exo (Z)
6-exo (E)
relative energy
E(nC-fσ*C-N
E(nC-fσ*C-C
E(nC-fσ*N-H
4.5 (3.0)
27.2 (24.8) 6.3 (7.9)
1.5 (2.8)
0.0 (0.0)
10.6 (11.6) 16.7 (13.9)
21.7 (21.5) 4.9 (7.8)
)
)
)
18.2 (17.1) 1.2 (2.4)
NA
18.3 (17.4)
NA
NA
11.2 (7.5)
aEnergies are given in kcal/mol, data for R=Ph are in parentheses,
structures are given in Scheme 10.
anionic cyclizations lies in their lower exothermicity. Once
the thermodynamic factors are removed, intrinsic barriers
for these two anionic cyclizations become slightly lower than
those for the radical counterparts. It is also interesting that,
independent of the type of reaction species (nitrogen anion
or carbon radical), the 5-exo-dig cyclization remains stereo-
electronically preferred to the 6-endo-dig ring closure as
evidenced by the lower intrinsic 5-exo barriers.
The Origin of Z-Stereoselectivity in the 5-Exo Cyclizations
and Competition of Stereoelectronic Hyperconjugative Effects
in Cyclized Carbanions. Our computational analysis yielded
several interesting observations regarding relative energies of
stereoisomeric anions formally corresponding to products of
5-exo and 6-exo-dig cyclizations. Although stereochemical
information is lost during the prototropic isomerization of
the formal 6-exo products into experimentally observed
benzopyridazinones 6, the 5-exo cyclization proceeds stereo-
selectively and affords only Z-isomer of the product. This
result is fully consistent with the lower calculated barrier for
the formation of the Z-isomer.
An unusual observation is that although the transition
state energy for the 5-exo-dig cyclization leading to the
Z-isomer is lower than that for the analogous cyclization
of the E-isomer, the relative stability of the two cyclized
anions is opposite to that of the transition states. Taking into
account our long-standing interest in hyperconjugative
stereoelectronic effects,34 we analyzed delocalizing hypercon-
jugative interactions in the key anionic species using Natural
Bond Orbital (NBO) analysis. Similar interactions which
FIGURE 3. Competion of nC- f σ*C-N vicinal hyperconjugation
in the Z-anionic product of the 5-exo-dig closure and C H-N
3 3 3
H-bonding and nC- f σ*C-C vicinal hyperconjugation in the
E-anion.
involve σ bonds manifest themselves in numerous stereoelec-
tronic effects controlling organic structure and reactivity.35,36
In particular, hyperconjugation influences conformational
equilibria,37,38 modifies reactivity,39 determines selectivity,40
and is enhanced dramatically in excited, radical, and ionic
species.41 In the following part, we will show that observed
stereoselectivity stems from an interesting interplay of hyper-
conjugative effects which are developed to a different extent at
the different stages of the cyclization process.
NBO analysis identified an extremely strong hyperconjuga-
tive nC- f σ*C-N interaction of anionic carbon orbital and
antiperiplanar acceptor C-N bond34d in the Z-isomer. The
analogous interaction between these orbitals is significantly
lower in the E-isomer due to the less favorable syn-arrangement
of the two interacting orbitals. Evidently, this interaction is
developed already in the TS providing a favorable stabilizing
(38) (a) Reed, A. E.; Weinhold, F. Isr. J. Chem. 1991, 31, 277. (b)
Goodman, L.; Pophristic, V.; Gu, H. J. Chem. Phys. 1999, 110, 4268. (c)
Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983. (d)
Schreiner, P. R. Angew. Chem., Int. Ed. 2002, 41, 3579. (e) Cramer, C. J.
THEOCHEM 1996, 370, 135.
(39) Baddeley, G. Tetrahedron Lett. 1973, 14, 1645. Chang, J.-W. A.;
Taira, K.; Urano, S.; Gorenstein, D. G. Tetrahedron 1987, 43, 479. Um, I. H.;
Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729. Deslongchamps, P.
Tetrahedron 1975, 31, 2463. Doddi, G.; Ercolani, G.; Mencarelli, P. J. Org.
Chem. 1992, 57, 4431. Roberts, B. P.; Steel, A. J. Tetrahedron Lett. 1993, 34,
5167. Sato, M.; Sunami, S.; Kaneko, C. Heterocycles 1995, 42, 861 and
references cited therein. Wagner, P. J.; Scheve, B. J. J. Am. Chem. Soc. 1977,
99, 1858. Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu, X.;
So, J. -H.; Chelius, E. C. Acc. Chem. Res. 1999, 32, 18. Borden, W. T.
J. Chem. Soc., Chem. Commun. 1998, 1919. Maier, M. E. Angew. Chem., Int.
Ed. 2000, 39, 2073. Kleinpeter, E.; Rolla, N.; Koch, A.; Taddei, F. J. Org.
Chem. 2006, 71, 4393.
(35) (a) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic
Effects at Oxygen; Springer-Verlag: Berlin, Germany, 1983. (b) The Anomeric
Effect and Associated Stereoelectronic Effects; Thatcher, G. R. J., Ed.; ACS
Symp. Ser. No. 539; American Chemical Society: Washington, DC, 1993. (c)
Juaristi, E.; Guevas, G. The Anomeric Effect; CRC Press: Boca Raton, FL, 1994.
(d) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev 1988, 88, 899. (e) Juaristi,
E.; Cuevas, G. Acc. Chem. Res. 2007, 40, 961.
(36) Cohen, T.;Lin, M.-T. J. Am. Chem. Soc. 1984, 106, 1130. Danishefsky,
S. J.; Langer, M. Org. Chem. 1985, 50, 3672. Rychnovsky, S. D.; Mickus, D. E.
Tetrahedron Lett. 1989, 30, 3011. Vedejs, E.; Dent, W. H. J. Am. Chem. Soc.
1989, 111, 6861. Juaristi, E.; Cuevas, G.; Vela, A. J. Am. Chem. Soc. 1994, 116,
5796. Salzner, U.;Schleyer, P. v.R.J. Org. Chem. 1994,59, 2138. Vedejs, E.; Dent,
W. H.;Kendall, J. T.;Oliver, P. A.J. Am. Chem. Soc. 1996, 118, 3556. Cuevas, G.;
Juaristi, E.; Vela, A. THEOCHEM 1997, 418, 231. Anderson, J. E.; Cai, J.;
Davies, A. G. J. Chem. Soc., Perkin Trans. 2 1997, 2633. Wiberg, K. B.; Hammer,
J. D.; Castejon, H.; Bailey, W. F.; DeLeon, E. L.; Jarret, R. M. J. Org. Chem.
1999, 64, 2085. Juaristi, E.; Rosquete-Pina, G. A.; Vazquez-Hernandez, M.;
Mota, A. J. Pure Appl. Chem 2003, 75, 589.
(40) Beckwith, A. L. J.; Duggan, P. J. Tetrahedron, 1998, 54, 6919 and the
examples cited therein.
(41) (a) Muller, N.; Mulliken, R. S. J. Am. Chem. Soc. 1958, 80, 3489. For
more recent examples, see: (b) Stability of R-sulfonyl carbanions: Raabe, G.;
Gais, H. J.; Fleischhauer, J. J. Am. Chem. Soc. 1996, 118, 4622. (c)
Carbocations: Rauk, A.; Sorensen, T. S.; Maerker, C.; Carneiro, J. W. d. M.;
Sieber, S.; Schleyer, P. v. R. J. Am. Chem. Soc. 1996, 118, 3761. (d) Kirchen,
R. P.; Ranganayakulu, K.; Sorensen, T. S. J. Am. Chem. Soc. 1987, 109, 7811.
(42) Keith, B.; Khalaf, D.; Ghadir, F. J. Chem. Soc., Perkin Trans. 1990,
1333.
(37) Juaristi, E., Ed. Conformational Behavior of Six-Membered Rings;
VCH Publishers: New York, 1995. See also: Romers, C.; Altona, C.; Buys,
H. R.; Havinga, E. Top. Stereochem. 1969, 4, 39. Zefirov, N. S.; Schechtman,
N. M. Usp. Khim. 1971, 40, 593. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48,
5019. Graczyk, P. P.; Mikolajczyk, M. Top. Stereochem. 1994, 21, 159.
J. Org. Chem. Vol. 74, No. 21, 2009 8115