6124
P. L. Pisano et al. / Tetrahedron Letters 50 (2009) 6121–6125
(Table 1).14,15 Gratifyingly, the experimental d and
correctly reproduced.
D
d values were
chemical shifts of the derivatives obtained with CDAs might be
crucial.
These computational results support the stereochemical assign-
ment predicted by 1H NMR spectroscopy based on the empirical
model. In our case, this was unequivocally confirmed by optical
rotation measurements. However, this might not always be possi-
ble. When the optical rotations of the enantiomerically pure sec-
ondary alcohols are not known, the theoretical prediction of the
In summary, the O-acetylmandelates and the mandelate deriv-
atives have been efficiently used to determine the optical purity
and to predict the absolute configuration of endo- and exo-nor-
born-5-en-2-ol. The conformational, stereochemical and NMR
properties of these derivatives have been studied using an experi-
mental/theoretical approach. In accordance with the empirical
model proposed for secondary O-methylmandelates, all major con-
formers are synperiplanar. GIAO 1H NMR Boltzmann-weighted
average chemical shifts correctly reproduced the experimental d
and
Dd values. Preliminary studies show that this protocol can
be successfully applied to determine the enantiomeric ratios and
to predict the absolute configurations of other bicyclic and mono-
cyclic secondary cyclohexenols. These results will be reported in
due course.
Acknowledgements
We thank CONICET, Universidad Nacional de Rosario and AN-
PCyT for financial support, and Manuel González Sierra for NMR
assistance. P.L.P. thanks ANPCyT for the award of a fellowship.
A.M.S. thanks CONICET for the award of a fellowship.
Supplementary data
Supplementary data (experimental procedures, spectroscopic,
analytic and computational data and NMR spectra for all new com-
pounds) associated with this article can be found, in the online ver-
References and notes
1. Plettner, E.; Mohle, A.; Mwangi, M. T.; Griscti, J.; Patrick, B. O.; Nair, R.;
Batchelor, R. J.; Einstein, F. Tetrahedron: Asymmetry 2005, 16, 2754–2763, and
references cited therein.
2. (a) Mislow, K.; Berger, J. G. J. Am. Chem. Soc. 1962, 84, 1956–1961; (b)
Brown, H. C.; Vara Prasad, J. V. N.; Zaidlewicz, M. J. Org. Chem. 1988, 53,
2911–2916.
3. (a) Lightner, D. A.; Beavers, W. A. J. Am. Chem. Soc. 1971, 93, 2677–2684; (b)
Nakazaki, M.; Chikamatsu, H.; Naemura, K.; Asao, M. J. Org. Chem. 1980, 45,
4432–4440; (c) Eichberger, G.; Penn, G.; Faber, K.; Griengl, H. Tetrahedron Lett.
1986, 27, 2843–2844; (d) Oberhauser, Th.; Bodenteich, M.; Faber, K.; Penn, G.;
Griengl, H. Tetrahedron 1987, 43, 3931–3944; (e) Fantin, G.; Fogagnolo, M.;
Medici, A.; Pedrini, P.; Rosini, G. Tetrahedron: Asymmetry 1994, 5, 1635–1638;
(f) Kita, Y.; Takebe, Y.; Murata, K.; Naka, T.; Akai, S. J. Org. Chem. 2000, 65, 83–
88; (g) Moss, R. A.; Fu, X.; Sauers, R. R.; Wipf, P. J. Org. Chem. 2005, 70, 8454–
8460; (h) Moss, R. A.; Fu, X. Tetrahedron Lett. 2006, 47, 357–361.
4. The optical rotation of optically pure (1S,2S)-endo-norborn-5-en-2-ol has been
*
Figure 2. B3LYP/6-31G optimised geometries of the major conformers for O-
acetylmandelates 2 and mandelates 3.
estimated from the work of Sandman and Mislow (Ref. 5, [
CHCl3, ee 45.2%). The optical rotation of optically pure (1R,2S)-exo-norborn-5-
en-2-ol has been estimated from the work of Mislow and Berger (Ref. 2a, [
a
]
D
À73.4, c 2.62,
a
]
D
+5.8, c 8.7, CHCl3, ee 48%), which was based on correlations with its saturated
analogue, exo-norborneol.
5. Sandman, D. J.; Mislow, K. J. Org. Chem. 1968, 33, 2924–2926.
6. Guan, Y.-K.; Li, Y.-L. Chirality 2005, 17, 113–118.
Table 1
Experimental and calculated 1H NMR d and
D
d values (in ppm) for selected nuclei
H-3x H-6
7. Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2004, 104, 17–117.
8. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519; (b) Whitesell, J.
K.; Reynolds, D. J. Org. Chem. 1983, 48, 3548–3551; (c) Trost, B. M.; Belletire, J.
L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.;
Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370–2374;
(d) Chataigner, I.; Lebreton, J.; Durand, D.; Guingant, A.; Villiéras, J. Tetrahedron
Lett. 1998, 39, 1759–1762; (e) Sureshan, K. M.; Miyasou, T.; Hayashi, M.;
Watanabe, Y. Tetrahedron: Asymmetry 2004, 15, 3–7; (f) Sureshan, K. M.;
Miyasou, T.; Miyamori, S.; Watanabe, Y. Tetrahedron: Asymmetry 2004, 15,
3357–3364.
9. (S)-O-Acetylmandelic acid can be synthesized in 96% yield by acetylation of (S)-
(+)-mandelic acid with acetyl chloride. Saravanan, P.; Bisai, A.; Baktharaman,
S.; Chandrasekhar, M.; Singh, V. K. Tetrahedron 2002, 58, 4693–4706.
10. Hyperchem Professional Release 7.52, Hypercube, 2005.
11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr., Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y. Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
H-1
H-3n
Calcd. Exp.
Exp. Calcd. Exp.
Calcd. Exp. Calcd.
2N dR
3.19 3.12
3.02 2.90
0.17 0.22
0.75
0.99
1.03
1.20
2.03
2.10
1.99 5.95 6.20
2.12 5.47 5.73
dS
D
d
À0.24 À0.17 À0.07 À0.13 0.48 0.47
2X dR
2.93 2.83
2.71 2.52
0.22 0.31
1.62
1.70
1.63
1.71
1.17
1.47
1.44 5.93 6.02
1.68 5.89 5.87
dS
D
d
À0.08 À0.08 À0.30 À0.24 0.04 0.15
3N dR
3.19 3.01
3.00 2.81
0.19 0.21
0.68
0.99
0.89
1.27
2.04
2.13
2.09 5.92 6.29
2.22 5.40 5.76
dS
D
d
À0.31 À0.38 À0.09 À0.13 0.52 0.53
3X dR
2.94 2.83
2.68 2.54
0.26 0.29
1.62
1.72
1.64
1.78
1.11
1.47
1.28 5.95 6.00
1.68 5.90 5.92
dS
D
d
À0.10 À0.14 À0.36 À0.40 0.05 0.08
D
d = dR À dS.