pubs.acs.org/joc
hIAPP20-29 SNNFGAILSS-NH2 decapeptide.7 The 3D
Synthesis of a Ketomethylene Isostere of the
Fibrillating Peptide SNNFGAILSS
structure of these β-sheet forming fibrils can be used to
provide atomic-resolution insight into the key interactions
that hold these fibrils together.
Tina Mittag, Daniel E. Otzen, Niels Chr. Nielsen, and
Troels Skrydstrup*
Parallel to this work, we have set out to prepare analogues
of SNNFGAILSS 1 incorporating small structural changes
in order to examine their influence on fibril formation and
growth (Figure 1). To this end, the ketomethylene isostere
(SNNF-Ψ(CO-CH2)-GAILSS) 2 represents an interesting
target. Such a structural modification will remove a single
amide bond, thereby eliminating one hydrogen bond inter-
action. How this variation will influence the ability of such
peptides to form β-sheet fibrils will be of particular interest
for understanding stability of the fibril structures formed
from the parent peptide.
The Center for Insoluble Protein Structures (inSPIN),
Department of Chemistry and the Interdisciplinary
Nanoscience Center, Aarhus University, Langelandsgade 140,
8000 Aarhus C, Denmark
Received July 11, 2009
Synthesis of ketomethylene isosteres are generally not
simple operations and usually require multiple steps for
preparing these classes of dipeptide analogues.8 Recently,
we reported a novel and direct route to dipeptidyl keto-
methylene isosteres through the coupling of N-acyl oxazoli-
dinone derivatives of amino acids or peptides with acryl-
amides.9-14 In this way, these peptide isosteres can be
accessed directly from a single coupling step. Most impor-
tantly, the reaction conditions are mild and hence epimeriza-
tion is avoided at the adjacent stereogenic center to the newly
formed ketone. With this reaction in mind, we set out to
prepare a ketomethylene dipeptide isostere of the fibrillat-
ing peptide SNNFGAILSS at the structurally simplest
peptide bond position (Phe-Gly). The results of this work
again illustrate the usefulness of this lanthanide reagent for
performing carbon-carbon bond-forming reactions with
important biomolecules.
The direct synthesis of a ketomethylene isostere of the
fibril-forming decapeptide SNNFGAILSS is presented
with the goal of understanding how small structural
changes alter the ability of such peptides to recognize
each other for β-sheet formation. The key synthetic step
relies on a SmI2-mediated coupling of a N-tetrapeptidyl
oxazolidinone with a simple acrylate followed by depro-
tection of the carboxylic acid and a peptide coupling step
with the pentapeptide H-AILSS-NH2.
To commence this study, we initially focused our attention
on the synthesis of a ketomethylene isostere of the smaller
peptide NFGAIL as a model to examine the suitability of the
C-C bond-forming approach to this class of peptides. In a
recent publication, we reported that the SmI2-mediated
Deposition of human islet amyloid polypeptide (hIAPP)
as fibrillar amyloid in the pancreatic islets of Langerhans is a
characteristic histopathological marker for type II diabetes
mellitus (T2DM) and is found in more than 90% of the
affected patients.1,2 Extensive studies with fragments of
hIAPP have revealed that hIAPP20-29 (SNNFGAILSS),3,4
hIAPP22-27 (NFGAIL),5 and hIAPP22-29 (NFGAILSS)6 all
form amyloid fibrils with morphologies very similar to those
of the full-length polypeptide. This region of the peptide is
therefore believed to form the fibrillation core domain of
fibrils in the pancreas of type II diabetes patients. We have
recently determined the complete 3D β-sheet fibril structure
(7) Nielsen, J. T.; Bjerring, M.; Jeppesen, M. D.; Pedersen, R. O.;
Pedersen, J. M.; Hein, K. L.; Vosegaard, T.; Skrydstrup, T.; Otzen, D. E.;
Nielsen, N. C. Angew. Chem., Int. Ed. 2009, 48, 2118–2121.
(8) For a few pertinent examples, see: (a) Deziel, R.; Plante, R.; Caron, V.;
Grenier, L.; LlinasBrunet, M.; Duceppe, J. S.; Malenfant, E.; Moss, N.
J. Org. Chem. 1996, 61, 2901–2903. (b) Kaltenbronn, J. S.; Hudsepth, E. A.;
Lunney, B. M.; Michniewicz, B.; Woo, P. K. W.; Essenburg, A. D. J. Med.
Chem. 1998, 33, 838. (c) DeGraw, J. I.; Almquist, R. G.; Hiebert, C. K.;
Colwell, W. T.; Crase, J.; Hayano, T.; Judd, A. K.; Dousman, L.; Smith,
R. L.; Waud, W. R.; Uchida, I. J. Med. Chem. 1997, 40, 2386–2397.
(d) Kempf, D. J. J. Org. Chem. 1986, 51, 3921–3926. (e) Lin, W.; Theberge,
C. R.; Henderson, T. J.; Zercher, C. K.; Jasinski, J.; Butcher, R. J. J. Org.
Chem. 2009, 74, 645–651.
(9) Jensen, C. M.; Lindsay, K. B.; Taaning, R. H.; Karaffa, J.; Hansen, A.
M.; Skrydstrup, T. J. Am. Chem. Soc. 2005, 127, 6544–6545.
(10) Hansen, A. M.; Lindsay, K. B.; Sudhadevi Antharjanam, P. K.;
Karaffa, J.; Daasbjerg, K.; Flowers, R. A. II; Skrydstrup, T. J. Am. Chem.
Soc. 2006, 128, 9616–9617.
(11) Karaffa, J.; Lindsay, K. B.; Skrydstrup, T. J. Org. Chem. 2006, 71,
8219–8226.
(12) Lindsay, B. K.; Ferrando, F.; Christensen, K. L.; Overgaard, J.;
Roca, T.; Bennasar, M.-L.; Skrydstrup, T. J. Org. Chem. 2007, 72, 4181–
4188.
˚
of one of the hIAPP fragments with 0.5 A atomic resolution
using solid-state nuclear magnetic resonance spectroscopy
with a fully 15N,13C-labeled NFGAIL fragment of the
(1) Opie, E. L. J. Exp. Med. 1900, 5, 397–428.
(2) Westermark, P. Amyloid 1994, 1, 47–60.
(3) Glenner, G. G.; Eanes, E. D.; Wiley, C. A. Biochem. Biophys. Res.
Commun. 1988, 155, 608–614.
(4) Westermark, P.; Engstrom, U.; Johnson, K. H.; Westermark, G. T.;
Betsholtz, C. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 5036–5040.
(5) Tenidis, K.; Waldner, M.; Bernhagen, J.; Fischle, W.; Bergmann, M.;
Weber, M.; Merkle, M.-L.; Voelter, W.; Brunner, H.; Kapurniotu, A. J. Mol.
Biol. 2000, 295, 1055–1071.
(13) Mittag, T.; Christensen, K. L.; Lindsay, K. B.; Nielsen, N. C.;
Skrydstrup, T. J. Org. Chem. 2008, 73, 1088–1092.
~
(14) Taaning, R. H.; Thim, L.; Karaffa, J.; Campana, A. G.; Hansen,
A,-M.; Skrydstrup, T. Tetrahedron 2008, 64, 11884–11995.
(6) Azriel, R.; Gazit, E. J. Biol. Chem. 2001, 276, 34156–34161.
DOI: 10.1021/jo901466b
r
Published on Web 09/09/2009
J. Org. Chem. 2009, 74, 7955–7957 7955
2009 American Chemical Society